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Abstract

In this note we describe the equivariant diffeomorphism types of compact symplectic manifolds
M which admit a Hamiltonian action of a connected compact Lie group G such that the quotient
space M /G has dimension 1. For a class of these manifolds we compute their small quantum
cohomology algebra. We also construct some symplectic manifolds of cohomogeneity 2. © 1998
Elsevier Science B.V.
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1. Introduction

An action of a Lie group G on a manifold M is called of cohomogeneity k if the regular
(principal) G-orbits have codimension k in M. In other words the orbit space M/G has
dimension k. It is well known (see e.g. [Kir]) that homogeneous symplectic manifolds are
locally symplectomorphic to coadjoint orbits of Lie groups whose symplectic geometry
can be investigated in many aspects [Gr,HV,GK]. Our motivation is to find a wider class
of symplectic manifolds via group approach, so that they could serve as test examples for
many questions in symplectic geometry (and symplectic topology). In this note we describe
all compact symplectic manifolds admitting a Hamiltonian action with cohomogeneity 1
of a connected compact Lie group. We always assume that the action is effective. We
also remark that 4-manifolds admitting symplectic group actions (of cohomogeneity 1 or
of S!-action) have been studied intensively by many authors, see [Au] for references. In
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particular the classification of compact symplectic 4-manifolds admitting S O (3)-action of
cohomogeneity 1 was done by Iglesias [I].

Let us recall that if an action of a Lie group G on (M, w) preserves the symplectic form
w then there is a Lie algebra homomorphism

¢=LieG 33 Vect,,(M), (1.1)

where Vect,, (M) denotes the Lie algebra of symplectic vector fields. The action of G is
said to be almost Hamiltonian if the image of F, lies in the subalgebra Vectyym (M) of

Hamiltonian vector fields. Finally, if the map F, can be lifted to a homomorphism g £
C®(M,R) (i.e. Fyv = sgrad F,) then the action of G is called Hamiltonian. In this note
we shall prove the following theorem.

Theorem 1.1. Suppose that a connected compact symplectic manifold (M, w) is provided
with a Hamiltonian action of a connected compact Lie group G such that dimM/G = 1.
Then M is G-diffeomorphic either to a G-invariant bundle over a coadjoint orbit of G whose
fiber is a complex projective manifold, or to a symplectic blow-down of such a bundle along
two singular G-orbits.

The main ingredients of our proof are the existence of the moment map, Duistermaat’s—
Heckman’s theorem [DH] and the convexity theorem of Kirwan [Kiw]. For certain G-
diffeomorphism types of these spaces we shall give a complete classification up to equiv-
ariant symplectomorphism (see Section 2).

In Section 3 we give a computation of the (small) quantum cohomology ring of some
spaces admitting a Hamiltonian U,,-action with cohomogeneity 1 and discuss its corollaries.

We also consider the case of a symplectic action of cohomogeneity 2. In particular we get:

Theorem 1.2. Suppose that a connected compact symplectic manifold M is provided with a
Hamiltonian action of a connected compact Lie group G such that dim M /G = 2. Then all
the principal orbits of G must be either (simultaneously) coisotropic or (simultaneously)
symplectic. Thus a principal orbit of G is either diffeomorphic to a T*-bundle over a
coadjoint orbit of G (in the first case) or diffeomorphic to a coadjoint orbit of G (in the
second case).

At the end of our note we collect in Appendix A some useful facts of the symplectic
structures on the coadjoint orbits of compact Lie groups.

2. Classification of compact symplectic manifolds admitting a Hamiltonian action
with cohomogeneity 1 of a connected compact Lie group

Itisknown [Br] that if an action of a compact Lie group G on a connected compact oriented
manifold M has cohomogeneity 1 (i.e. dim M/G = 1) then the topological space Q =
M/G = m(M) must be either diffeomorphic to the interval [0, 1] or a circle S'. The slice
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theorem gives us immediately that G (m) is a principal orbit if and only if the image 7 (G (m))
in @ is ainterior point. In what follows we assume that (M, ) is symplectic and the action of
G on M is Hamiltonian. Under this assumption the quotient @ is [0, 1] (see the proof below).

Proposition 2.1. Let G(m) be a principal orbit of a Hamiltonian G-action on (M*", o).
Then G(m) is a S} -bundle over a coadjoint orbit of G.

Proof. In this case there exists a moment map
M5 g% (u(m), w) = Fy(m). @1

For a vector V € T,G(m) there is a vector v € g such that V = d/dti—g(exptv) =
sgrad F,. Hence we get

(p(V), w) = dFy (V) = {Fy, Fol(m) = ({w, v], u(m)}, (2.2)

which implies that y is an equivariant map. Therefore the image ©(G(m)) of any orbit
G (m) on M is an adjoint orbit G (u(m)) C g*.
To complete the proof of Proposition 2.1 we look at the preimage u ™! (u(m)}.

Lemma 2.2, The preimage w Hu(m)} is a closed submanifold of dimension at most I in
M. If the preimage has dimension 1 then it is an orbit of a connected subgroup S,'n CG.

Proof. Clearly the preimage is a closed subset. We shall show that its dimension is at most
1. Let V be a non-zero tangent vector to the preimage w™ {u(m)} at x. Then p, (V) = 0.
Using the formula

(1 (V) w) = dF, (V) = w(ngd]:w, V) (2.3)

for all w € g we conclude that V is also a tangent vector to G(m) and moreover V
annihilates the space span {dF, |a € g} which has codimension 1 in 7*M. This proves
the first statement. In particular there is an element v € g such that V = sgrad F;. Our
claim on the manifold structure now follows from the fact that exprv(x) C ™ '{p(m)).
This fact also yields the last statement on the orbit structure of the preimage. Finally, the
preimage is connected because the quotient (G (m)) = G(m)/{u~'} is simply connected
(see Appendix A) and G (m) is connected. |

Proof of Proposition 2.1 (conclusion). Now by dimension reason, if m is a regular point of
the G-action (i.e. m is in a principal G-orbit) then ! {1 (m)} is a circle. This completes
the proof of Proposition 2.1. O

Since G is compact we can identify the coalgebra g* with g via the Killing form. From the
well-known convexity property of the moment map (see e.g. [Kiw]) we see that the quotient
Q = M/ G is canonically diffeomorphic to the intersection of the image of the moment map
@ (M) with a Weyl chamber W in a Cartan subalgebra Lie T C g (alternatively we can use
Lemma 2.2 to get the diffeomorphism between two quotient spaces: M/G and u(M)/G).
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We shall improve Proposition 2.1 (see also Remark 2.15) in the following proposition,
which is important for our construction of G-invariant symplectic structures. Let m be a
regular point of the G-action.

Proposition 2.3. There is a Hamiltonian S'-action on M such that G(u(m)) is a symplectic
quotient of M under this S'-action.

Proof. Tt suffices to show that there is a Hamiltonian S'-action on M such that the orbit
G (m) coincides with the level set of a Hamiltonian function generating this S'-action,
and moreover the S'-orbit through m € M coincides with the preimage ! {1 (m)}. To
construct a Hamiltonian function which generates this action we use the following simple
lemma, a proof of it can be found in [McDS].

Lemma 2.4. There is a compatible to w almost complex structure J on M which is G-
invariant.

Proof of Proposition 2.3 (continued). Now let Hg be a (unique up to constant and up to
sign) G-invariant function on M which satisfies the following condition:

27 || grad Hg ll= L™ {p(m)}), (2.4)

where L(-) denotes the length for the metric defined by (X, Y) = w(X, JY). It is easy to
see that Hg generates the required Hamiltonian $'-action. Clearly the symplectic form on
M descends to a symplectic form on the quotient G(m)/S' = p(G(m)). O

Remark 2.5.

(i) We also note that the stabilizer St of this coadjoint orbit ©(G(m)) is the product
G - S,}l, where G, is the stabilizer of the orbit G(m) C M, and S,l,, is a subgroup in
G, generating the flows w H{u(m)} (Lemma2.2). More precisely, since St is connected
and dim S,‘n = 1, St is the “almost” direct product of the connected component Gf)n
of G, with S} . Here “almost” means that on the level of Lie algebras the product is
direct, and hence G?n intersects with S,ln at a finite group Zg. Since G,, C St we get
that G, N S,, = Z, > 7).

(i) The (“new”) moment map pg1 determined by the S I.action associated to Hg also
defines a diffeomorphism between M /G and the image pg (M).

(iii) The Chern number of the S'-fibration G/G,, — G/St is zero if and only if G is an
almost product of S}, and a subgroup G’ C G. In general, by Duistermaat-Heckman
theorem this Chern number is defined uniquely by the intersection of w(M) with a
Weyl chamber.

We have seen that if an action of G on (M, w) is Hamiltonian with cohomogeneity 1
then the quotient space M /G can be identified with the intersection of (M) with a Weyl
chamber. Hence G acts on the image p (M) of M with at most three orbit types: a regular
one G/Z(v) is the image of a regular orbit G(m) C M and possibly other two orbit types
G/ Zwin and G/ Zmax Which are also coadjoint orbits of G. Henceforth we get:
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Lemma 2.6. There are only four possible cases:
M Z(v) = Znin = Zmax,

(D Z() = Zmin C Zmax

(D) Z(v) = Zmax C Zmins

(V) Zmax O Z(v) C Zyin.

(Here “=" stands for conjugacy.)

Now we shall describe M according to four cases in Lemma 2.6.

Case (I): All symplectic quotients G(m)/S' are G-diffeomorphic. In this case by di-
mension reason and the fact that G/Z(v) is simply connected, we see immediately that
a singular orbit G (m’) is G-diffeomorphic to its image u(G(m’)) = G/Z(v). To specify
the G-diffeomorphism type of M it is useful to use the notion of segment [AA]. In our
case we just consider the gradient flow of the function Hg on M. After a completion and
a reparametrization we get a geodesic segment [s(¢)], ¢ € [0, 1], in M such that the stabi-
lizer of all the interior point s(¢), t € (0, 1), coincide with, say, G,,. (We observe that both
[s(¢)] and the geodesic through m with the initial vector grad Hg(m) are characterized by
the condition that every point in them is a fixed point of G,.) Denote by G and G| the
stabilizers at singular points s(0) and s(1). Looking at the image of the gradient flow of
grad H¢ under the moment map u we conclude that Gy = G.

Proposition 2.7. Incase (1) M is G-diffeomorphicto G x g, S2, where Gy = (G?n X S,ln )/ Zg
is the almost direct product of ng and S}, and the left action of Go on 52 is obtained via
the composition of the projections Gy — S,l,l /Zg with a Hamiltonian action of S,l,l /Zg
on 8.

Proof. First we identify the singular orbits in M and in G xg, $2. The segment [s(?)]
extends this diffeomorphism to a diffeomorphism between M and G ¢, S2. Since Hg is
G-invariant it follows that this diffeomorphism is G-diffeomorphism. a

Now let us compute the cohomology ring H*(M, R) ( for M in case (I)). Once we
fix a Weyl chamber we get a canonical G-invariant projection I1,,: u(M) — u(G(mo)),
where G(mg) = G/Go is a singular orbit in M. Let j := I1, o u denote the projection
M — B := u(G(my)) = G/Z(v) = G(mg). Geometrically j(x) = j(u_l(u(x))) is
the limit of the flow generated by grad Hg passing through x. Note that G(mg) is the
image of a section s : B — M of our S%-bundle, and in what follows we shall identify
the base B with its section G(mg). Let f denote the Poincare dual to the homology class
[G(mp)] € H (M, R).

Let xo € H2(u(G(mo)), R) be the image of the Chern class of the $'-bundle G (m) —
G (myg), where G(m) is a regular orbit G/G,, (or in other words, xg is the Chern class of
the normal bundle over G (mg) with the induced (almost) complex structure).

Let {x;, R;} denote the set of generators and their relations in cohomology ring
H* (1 (G (mo)), R) (see (Bol], correspondingly Proposition A.4 in Appendix A).
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Proposition 2.8. We have the following isomorphism of additive groups:
H*(G x¢, S*.R) = H*(G/Gy. R) ® H*(§. R). (2.5)

The only non-trivial relation in the algebra H* (M, R) are (R1), (R2), with
FOf = j"(x0)) = 0. (R2)

Proof. Statement (2.5) on the additive structure of H*(M, R) follows from the triviality
of the cohomology spectral sequence of our $2-bundle. Clearly (R1) remains the relation
between the generators {j*(x;)} in H*(M, R). To show that relation (R2) holds we have two
arguments. One is in the proof of Lemma 2.13 and the other is here. Using the intersection
formula for xo we notice that the restriction of ( f — j*(xg)) to G{(my) is trivial. Thus to get
relation (R2) it is enough to verify that the value of LHS of (R2) on the cycles in M of the
forms j_I ([C]) is always zero, where [C] € H2(B, Z). Denote by P Dy (-) the Poincare
dual in M. From the identity

(PDy([G(mo)]))* = PDp(1G(mo) N G(mg)]) = P Dy [P Dg(x0)]
we get f2 = PDy[PDg(xo)]. Now it follows that
FAG7aen) = fac. (R2a)

On the other hand, since the restriction of the 2-form representing j*(xp) to the fiber
§?% is vanished, we can apply the Fubini formula to the integration of a differential form
representing the class f - j*(xp) (we can assume that [C] is represented by a pseudo-
manifold). In the result we get that

£ i) HICT) = xollCD) = £(C)). (R2b)
Thus (R2) is a relation in H*(M, R). Finally the statement that (R2) is the only “new”
relation in H*(M, R) follows from the triviality of our spectral sequence. |
Remark 2.9.

(i) If we take the other singular orbit G(m;) = G/G | then the Chern class of the sl
bundle : G(m) — G(m) is —xq (after an obvious identification G (mg) with G(m )
since G (m)) can be considered as another section (at infinity) of our Sz-bundle). Itis
also easy to see that the restriction of f on G(m ) is zero since G (mp) has no common
point with G ().

(i) If S,L is a normal subgroup of G then M is a direct product G/ G x S2. In this case any
G-invariant metric on M = G x ¢, S* can be recovered from a G-invariant metric on
G/Gy and an S! -invariant metric on the fiber $2. If S}, is not a normal subgroup of G
then there is an element g € G such that Ad,(Lie S!) # Lie S} . This implies that a
G -invariant metric on S'-fibration G/G(,f, is defined uniquely by the quotient metric on
G/ Gy. In this case the space of G-invariant metrics on M is one-to-one corresponding

to the space of G-invariant metrics in the image of M under the moment map p. Here
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we observe that the foliation ¢! {z(m)} (and hence the quotient M/S' = M/~ ()
can be defined intrinsically by the action of G on M (see Lemma 2.13).

Proposition 2.10. Ler M>" be in case (1) of Lemma 2.6 and let us keep the notation in
Proposition 2.8 for M. Then M*" admits a G-invariant symplectic form w in a class [w] €
H2(M? R) if and only if [w] = j*(xX) +a - f witha > 0, and (x +1 - - x9)"~' > 0
forallt € [0, 1]. In particular M*" always admits a G-invariant symplectic structure such
that the action of G on M is Hamiltonian.

Proof. Let[w] = j*(x)+a« - f withx € H*(G/ Gy, R). The condition that & > 0 follows
from the fact that the restriction of w to each fiber $ is positive. (Here we assume that the
orientation of M agrees with that of G(m) and the frame (grad Hg, sgrad Hg). The last
frame is a frame of tangent space to the fiber $2.) Thus the “only if”” statement now follows
trivially from the Duistermaat-Heckman theorem.

Now let us assume that the class [w] satisfies the condition in Proposition 2.10. Clearly all
these cohomology classes (x +1 -« - xp), 0 <t < |, are realized by G-invariant symplectic
forms by our condition (see also Remark A.5). We fix a 1-parameter family of G-invariant
metrics on G/Go which are also compatible with these symplectic forms. According to
Remark 2.9(ii) we can construct a G-invariant metric on M which compatible with this
family of G-invariant metrics on G/ Gy. Lifting to M we can define the restriction @ of w
to each orbit G (m). We normalize the G-invariant metric on M in the direction grad Hg
orthogonal to the orbit G () such that the following condition holds:

grad Ho(@)(m) = —L (™ {u(m)})j* xo. (2.6)

where grad Ho := grad Hg/ || grad Hg || (we can normalize this metric by multiplying
the length of grad H¢ with a positive function, because & > 0). By the construction @ is a
G-invariant 2-form on M whose rank is (n — 1). Denote by af'g the G-invariant 2-form on
M whose restriction to each fiber S7 is compatible with the restriction of the G-invariant
metric to S°. We put w = @ + o fe. By the construction w is a G-invariant 2-form of
maximal rank on M. We claim that w is a symplectic form realizing the class j*(x) +« - f.
To verify the closedness of w it suffices to establish the following identities:

dw(sgrad Hy, grad Ho, V1) =0, 2.7)
dw(sgrad Hy, V|, Vo) =0, (2.8)
dw(grad Hy, V1, V2) =0, 2.9)
dw(Vy, V2, V3) =0, (2.10)

for all V; in the normal bundle to the fiber §2 and here sgrad Hy denotes the unite vector in
ker w|G(m), whose orientation agrees with that of the fiber st Using the formula

3dw(X. Y. Z) = X(w(Y, Z)) + Y(w(Z. X)) + Z(w(X.Y))
-w(X. Y. Z)—w(Y,Z],X) —w(Z,X].Y) (2.11)

we easily get that the LHS of (2.8) equals dw\Giny = 0.
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Applying (2.11) to (2.10) we also get that dw(V), V2, V3) = dw(V], V2, V3) + dafG
Vi, V2, V3) =0+ 0=0.

To compute (2.7) we assume that V; is generated by the action of a 1-parameter subgroup
of G (acting on M). Taking into account that [sgrad Hy, grad Hy] € ker o we get

—3dw(sgrad Hy, grad Hy, V) = afc([grad Hy, V1, sgrad Hp)
— afg([sgrad Hy, V], grad Hp)). (2.12)

RHS of (2.12) is zero since afg is G-invariant. Hence (2.7) is zero.

To compute (2.9) we also assume that V; is generated by the action of a 1-parameter
subgroup of G. Since Hg is G-invariant we get [V;, grad Hg] = 0 = [V}, grad Hypl.
Applying (2.11) to LHS of (2.9) we get

3dw(grad Ho, Vi, V2) = grad Ho(@(V1, V2)) — a f6 (IV1, Val, grad Ho).
2.13)

By the choice of & fG the second term in RHS of (2.13) equals —(sgrad Hy, [V}, V2]).

Let us denote by M8 the set of regular points of the G-action on M. By the choice of V;
and o (see (2.6)) the first term in LHS of (2.13) equals (1/27) d6(Vy, V2) - L(;L'1 {r(m)})
= —(1/4m)6({Vy, Vo) - L{(pn~ 1 {u(m)}), where 6 is the connection form on the S1-fibration
MT™E _In the presence of the (lifted) S'-invariant metric on M™2 we can take 6 ([V}, V]) as
4 (sgrad Ho, [V1, Va1)/L(u™ {n(m))).

It follows that the ILHS of (2.13) equals zero. This completes the proof of the closedness
of w. Looking at the restriction of w to G(m) and G(mg) we conclude that w represents
the class [j*(x) + « - f].

The statement on the existence of a G-invariant symplectic structure follows from the
fact that G /G always admits a class x such that x”~! > 0. Since we can multiply x with
a large positive constant A, the class (x + tx())”_1 is also positive for all ¢ € [0, 1] and we
can apply the first statement here.

The vanishing of the first Betti-number of M implies that the action of G is almost
Hamiltonian and hence Hamiltonian because G is compact. O

Cases (I1) and (I1I) (in Lemma 2.6): If we are interested in the G-diffeomorphism type
then these cases are equivalent by changing the sign of the function Hg. Thus we shall
consider case (II): Z(v) = Zuyin. (We can also consider case (I) as a subcase of case (II).)
Since the two singular orbits are the critical level set for the function Hg we get that at
every singular point m € M the preimage 1! {14(m)} consists of exactly one point. Hence
Gmax = Zmax and Gin = Zpin- Note that Gpax/ Greg = sk by the slice theorem. On the
other hand we have Z(v) = Greg x § ! Because Zmax/Z(v) is always of even dimension
we have Znax/Z(v) = cpk-b/2 —cpl.

Lemma 2.11. In case (1) we have the following decompositions: Gmax = SUi4+1 x Gy,
Greg = SU; x Gg and Z, = S(U; x Uy) x Gy, where the inclusion SU; — S(U; x Uy) —
SUj+, is standard.
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Proof. By checking Table A.3 (in Appendix A) of possible coadjoint orbit types we see
that the pair (Z(v), Zmax = Gmax) in case (II) can be only:

Series (A): Zmax = S(Ui41 % --- x Uy,). Then Z(v) = S(U; x St x ... x U,,) and
Greg = S(Up x - -- x Up,).

Series (B), (D): Zmyax = U1 X -+ X SO2p,4(1), Z(W) = Uy x Ut X -+ x SO 4(1)
and Greg = Uy x -+ X SO, 4(1).

Series (C): Analogous to (B) and (D).

Exceptional case: The same (see Table A.3 in Appendix A).

If G 1s a product of compact Lie groups then its coadjoint orbits are product of coadjoint
orbits of each factors. It it well known that every compact group Lie admits a finite covering
which is a product of a torus and compact simply connected Lie groups whose algebra are
simple. Thus to prove Lemma 2.11 in general case it suffices to consider the above cases. O

The following proposition is an analog of Propositions 2.8 and 2.10.

Proposition 2.12. Let M be in case (I1). Then M is G-diffeomorphic to a G-invariant
CP'*' bundle over G / Gmax. There is a G-invariant symplectic structure on M and the
action of G is Hamiltonian with respect to this structure.

Proof. To prove the first statement we consider the projection M — G/Gmpax: x —
1(x) = IT(u(x)), where IT is a canonical projection from p (M) to the singular coad-
joint orbit G/Gmax. We recall that this canonical projection can be chosen by using the
intersection of u(M) with a Weyl chamber (see [Kir]). By Lemma 2.11 the fiber of this
projection is the sum D21 U §2+1 5 1 U CP! and isomorphic to CP!*!. Clearly this
fiber consists of all trajectories of the flows grad Hg which end up at a point in the singular
orbit G/ Gnax. Hence the action of G sends a fiber to a fiber.

It is also easy to describe the cohomology algebra of M by the method in Proposition 2.8.
Namely we denote by f the Poincare dual to the singular orbit G/ G, of codimension 2
in M. Since the singular orbit G/ G mi, intersects the fiber CP/*! ata hyperplane CP', the
restriction of f on the fiber CP**! is the generator of the cohomology group H2(CP", R).
Henceforth the ring H*(M, R) is generated by { f, x;}, where x; are the pull-back of the
generators of the ring H* (G /G max, R) (compare (2.5)). Let (R1) denote the relation be-
tween x; in H*(G/Gmax, R), and let P, denote the Poincare dual to the singular orbit
G/Gmin C M. Put (R2) = f - Ppip. It is easy to see (using the fact that two singular
orbits have no common points and the associativity of the cap action) that (R1) and (R2)
are the only relation in H*(M, R). (Now appiy to the case in Proposition 2.8 we observe
that Ppin = f — x0.)

To show the existence of a G-invariant symplectic structure on M we use the lifting
construction of a family of invariant symplectic structures on G/G yax as in the proof of
Proposition 2.10. Here the main observation is the following. ‘

Lemma 2.13. Let G(m) be a principal orbit and py denotes the projection from M \
(G/Gmax) — G/ Gmin which is defined by the gradient flow of Hg. Then the characteristic
leafu_] {r(m)} coincides with p,;] (m) N G(m).
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Proof. The projection of the gradient flow of Hg is also a gradient flow of a G-invariant
function H on u(M). The slice theorem tells us that along the gradient flow of H all the
stabilizer groups coincide. Hence follows statement. )

Proof of Proposition 2.12 (continued). Let [w] = x + « - f be an element in H3*(M,R).
Clearly a necessary condition for the existence of a symplectic form w in the class [w] is
that x/ > 0, @ > 0 and for all # € [0, 1) we have that the restriction of the cohomology
class (j*x +t - a - f) to the big orbit G/ Gmin is also symplectic. (That follows from the
Duistermaat—Heckman theorem or Kirwan’s theorem.) Here the restriction of f to the big
orbit G/ G nip is the first Chern class of the S!-fibration G(m) oy G/ Gunin- Now let the
class |w] € H3(M, R) satisfy the above condition. Lifting the family of symplectic forms
on the quotient (M \ (G/Gm.dx))/Sl we get a symplectic form on M \ (G/Gmax) (see the
proof of Proposition 2.10). By the construction the lifted form extends continuously and
non-degenerately on the whole M such that its restriction to the small orbit equals j*(x).
The closedness is also automatically valid. Considering the restriction of the lifted form to
the two singular orbits yields that our form realizes the cohomology class j*(x) +a - f.
To show the existence of a G-invariant symplectic structure on M we use the fact that
Gmax/Gmin = CP!. Under this condition we can find a G-invartant 2-form ¥ in a class
x e HZ(G/GmaX, R) such that x is a G-invariant symplectic form and j*(x) + tf isa G-
invariant symplectic form realizing the cohomology class j*(x) +¢- f fort € (0. 1]. (Here
we construct a G-invariant 2-form on G / G ¢ by G-invariant extension of a Gy« -invariant
2-form (e, [X, Y]) in the T.(G /G max)-) O

Case (IV) (in Lemma 2.6): First we note that according to the theorem of Duistermaat—
Heckman this case never happens when dim M = 4, because the volume of a orbit G (¢ (m))
tends to zero when w(m) tends to a point in a singular (coadjoint) orbit. The same argu-
ment as in case (II) shows us that Gpax = Zmax, Gmin = Zmin and Zyax/Z(v) = CP!,
Zmin/Z(v) = CP*.

Proposition 2.14. Suppose that M is in case (IV). Then M is G-diffeomorphic to a G-
invariant bundle over a coadjoint orbit of G or to the symplectic blow-down of such a
G-bundle along the two singular (simplectic) orbits of G.

Proof. We consider three possible subcases: (IVa), (IVb) and (IVc).

(IVa)If/ > 2and k > 2, then Gax = S(Up41 X Ux x Uy) x Go, Gin = SWUp x Uy x
Ui41) X Go, Greg = S(Up x Uy x SHYx Gy, and Z(v) = S(U; x Uy x Uy x U;) x Gy. Here
the inclusion U; — U4 and Uy — Uiy is canonical. Let O := G/(S(Uj41 x Ug41) %
Gy) be a coadjoint orbit of G. Let ITp, denote the natural G-equivariant projection from
G/Gpin — O. In the same way we define the projection [Tm,x. We observe that if the
two points Mmmax € G/Gmax and Mmin € G/Gmin are in the same gradient flow of the G-
invariant function Hg then their image under [Ty, and [Ty, coincide. Hence the projection
Myin and IMy,x can be extended to a projection [T : M — O. Clearly the fiber is invariant
under the G-action. The group S(U; x U 1) acts on the fiber of projection [T from M
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to O with three orbit types: the singular ones are CP' and CP* and the regular orbit is
SWis1 x Upe 1)) /SWU; x Uy x S'). Thus the fiber is diffeomorphic to C P/ H+1,

The simplest example of this case is CP/+**+! with the standard action by S(Uj4+) %
Ug+1) C SUrq142.

(IVb) If k = 1, [ > 2, then except the above decomposition for G nax. Gmins Greg and
Z(v) there is only the following possible subcase: Z(v) = S(U; x Uy x Uy) x Go, Gmax =
S(Ur x Uy x Go, Grmin = S(U| x Upy1) x Gg, and Greg = SU; x St x Go. Let S,]n be the
subgroup of Z(v) generated by the vector orthogonal to Lie G in Lie Z(v). Denote by
M the suspension of G/ Gre,. Clearly M is diffeomorphic to G x z(y) $2, where Z(v) acts
on §? via the projection to S| . According to Proposition 2.10 M can be provided with a
G-invariant symplectic form such that the reduced symplectic form at G/Z(v) (considered
at the “mean point” in M) is the same as that reduced from M. We claim that M is a
symplectic blow-down of M along the two singular orbits G/ Z (v)max and G/ Z (V) min. To
see this we cut a G-invariant neighborhood of two G-singular orbits in M (resp. M). By
the very construction of M these new symplectic manifolds are symplectomorphic. Hence
follows the statement.

Now we shall show the existence of such a G-symplectic manifold. Denote by k& the
Cartan subalgebra of g. By Kirwan’s convexity theorem there are elements v, « € k such
that Z(v) = S(Uy x Uy x Uy) x Go, Z(v + &) = Guax, Z(v — &) = G pjn. Duistermaat—
Heckman tells us that the Chern class of the S,',, -bundle G/ Greg — G/Z(v) is proportional
to . Hence the Lie subalgebra Lie G is orthogonal to o in Lie Z(v). We shall show that
there are such elements o and v satisfying the above condition.

Without lost of generality we assume that Go = 1. Thus G = SU;15. Write v = (xy,
X2, X3, ..., x3) (I times) with )_ x; = 0 and x| # x. Thus the equation for & = (. .
a3, ..., 03)i8a +ar+lay = 0, x4y = x3+a3 (andis not zero), x| —a; = x2 —as (and
is not zero). The solution to these equations is (/ +2)a| = [{x] —x2), 02 = | —Xx] +x3 =
(= Dxy — @ — Dxy, a3 = a2 +x2 —x3 = (| — )(x; — 2x2) — x3. The only thing
need to check is the fact that Zmax/Greg = S 7!, Zmin/ Greg = S !, where Geg is the
subgroup generated by the subalgebra orthogonal to the vector @. We can do it by finding
an orthogonal representation of G i, (resp. Gax) on C? (resp. €'y such that it acts on §°
(resp. S%~1) transitively with Greg as an isotropy group (see also [AA] which includes a
corresponding Borel’s table of the groups transitively acting on spheres).

With these data at hand it is easy to construct a G-invariant symplectic structure on
the G-manifold (Gmin. Greg, Gmax) by the same lifting construction as in the proof of
Proposition 2.10. Namely we chose the family of symplectic form on G/Z(v + ta), r €
[—1, 1], as the Kirillov—Kostant-Sourriau form.

(IVe) If k =1 = 1, then except the decomposition analogous in subcase (IVb) (and hence
subcase (I'Va)) there is only the following possible cases with Lie Gmax = Lie Gpin =
suy x Lie Go, LieZ, = s(u) x u1) x Lie Go. Using Kirwan’s convexity theorem we
conclude that this case never happens. O

Clearly Theorem 1.1 follows from Lemma 2.6, and Propositions 2.10, 2.12 and 2.14. We
also note that any M in cases (I[)-(IV) can be considered as a symplectic blow-down of a
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G-symplectic manifold in case I. To compute the cohomology ring of a symplectic blown
we may use a method in [GH, Chap. 4, Section 6].

Remark 2.15. The case of a non-Hamiltonian symplectic action with cohomogeneity 1 of
a compact Lie group G is a bit more combinatorially complicated. The main observation
in this case is the fact, analogous to Proposition 2.1, namely any principal orbit of such
an action is an S'-bundle over a homogeneous symplectic manifold (the Kirillov—Kostant—
Sourriau theorem states that such a manifold is locally isomorphic to a coadjoint orbit
of G or an central extension of G). A simple case when the quotient space Q = M/G
is isomorphic to S' can be done easily because in this case, according to Alekseevskis’
theorem [AA, Proposition 4.4], M must be an extension of a primitive manifold T!+1 with
a free action of Z; x T' by means of group G and an epimorphism ¢ from a subgroup
H C GtoZ; x T', where Z; x T" acts freely on T'*!. Since G/H is a principal orbit of
M it must be an S!-bundle over a coadjoint orbit of a central extension of G.

3. Small quantum cohomology of some symplectic manifolds admitting a
Hamiltonian action with cohomogeneity 1 of U,

Small quantum cohomology ? (or more precisely the quantum cup-product deformed at
HZ(M,C) Cc H*(M, ©)) was first suggested by Witten in context of quantum field theory
and then has been defined mathematically rigorous for semi-positive (weakly monotone)
symplectic manifolds by Ruan-Tian [RT] (see also [MS]) and recently for all compact
symplectic manifolds by Fukaya and Ono [FO]. This quantum product structure is an
important deformation invariant of symplectic manifolds (and recently Schwarz [Sch] has
derived a symplectic fixed points estimate in terms of quantum cup-length). Nevertheless
there are not so much examples of symplectic manifolds whose quantum cohomology
can be computed (see [CEFGP,GK,ST,RT,W1]). The main difficulty in the computation of
quantum cohomology is that if we want to compute geometrically it is not easy to “see”
all the holomorphic spheres realizing some given homoiogy class in Hy(M, Z). (On the
other hand, computational functorial relations for quantum cohomology are expected to be
found.)

In this section we consider only the case of M being a CP*-bundle over Grassmannian
Gri(N) of k-planes in Q:NZ M = U(N) X(U (k) x U(N~k).¢) CPk, where ¢ acts on CPk
through the composition of the projection onto U (k) with the embedding U (k) — U (k+1)
and the standard action of U (k 4+ 1) on CP* (“standard” action means the projectivization
of the standard linear action on C¥*1). It is easy to see that the action on CP* of the
restriction of ¢ to U (k) has two singular orbits: CP*~! and a point, and its regular orbits
are the sphere S2~!. According to the previous section we see that M can be equipped
with a G-invariant symplectic structure and a Hamiltonian action of G = U(N) with the
generic orbit of G-action on M being isomorphic to U(N)/(U(k — 1) x U(N —k)) and

2 For a definition and a formal construction of full quantum cohomology see [KM].
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its image under the moment map u: M — u(n) is symplectomorphic to the flag manifold
UN)/(UQ) xU(k—1) x U(N —k)). With respect to Lemma 2.6 we see that M belongs
to case (I) if and only if k = 1, in this case M is a toric manifold. We can also consider
M as the projectivization of the rank (k + 1) complex vector bundle over Gry (N) which is
the sum of the tautological C*-bundle Ty and the trivial bundle C. A special case of such
M is CP2#C P2 whose quantum cohomology is computed in [RT, Example 8.6] (see also
[KMD).

ByLemma 3.1 below M admits a G-invariant monotone symplectic structure. To compute
the small quantum cohomology algebra of M we use several tricks well known before
[ST,RT,W] (e.g. the use of Gromov’s compactness theorem) and the positivity of intersection
of complex submanifold. (In our monotone case we can also use the fact that the projection
to the base Gri(N) of a holomorphic sphere in M is also a holomorphic sphere in Gri(N)
with area less than or equal to the area of the original sphere.) Thus we can solve this
question in our cases positively. It seems that by the same way we can give a recursive
rigorous computation of small quantum cohomology ring of full or partial flag varieties,
since any k-flag manifold is a Grassmannian bundle over a (k — 1)-flag manifold (see also
[GK,CEFGP] for other approachs to this problem).

Recall that [Bo] the cohomology algebra H*(Gry(N), C) is isomorphic to the factor-

algebra of the algebra Clx, ..., xx] ® C[y1, ..., ynv—«] over the ideal generated by S[J]“(N)
(x1,.... yN—k) (see also Proposition A.4 in Appendix A). Geometrically x; is ith Chern

class of the dual bundle of the tautological Ck-vector bundle over Gry (N), and y; is
ith Chern class of the dual bundle of the other complementary C" ~*-vector bundle over
Gr(N). Another description of H*(Gri(N), R) uses Schubert cells which form an additive
basis, the Schubert classes, in H*(Gri(N), R) (see e.g. [FGP] and the references therein
for the relation between two approaches). Summarizing we have (see e.g [ST,MS])

Clxy, ...,
H(Gre(N), €) = —2 e %]
(YN—k+1s--> YN)
where yy ;1= — Z,N:Bkﬂ X;iYN—k+j—i (are defined inductively). The first Chern class

of T,Gri(N)is Nxj.

The quantum cohomology of Gri(N) was computed in [ST,W]. Now let us compute
the quantum cohomology algebra Q H*(M, C). Denote by f the Poincare dual to the big
singular orbit U(N)/(U(1) x U(k— 1) x U(N —k)) in M. Let xy, ..., xt be the generators
of H*(Gry(N), C) as above. It is easy to see that the first Chern class of T, M is (N —
Dx; 4+ (k+ 1) f. Then the minimal Chern number of T, M is GCD (N — 1, k + 1) (because
the Hy(M, Z) is generated by Ho(Gri(N)) and Hy(CP*y).

Lemma 3.1.

(i) We have
H*(M,C)z k — C[fvxla---,k.Xk] '
(fUf=x1 ffo 4 (= D%X0), YNkt 1s - s IN)

(i) M admits a G-invariant monotone symplectic structure.
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(i) The formula is known in more general context [BT, Chap. 4, Section 20; GH, Chap. 4,
Section 6]. But in our simple case we shall supply here a simple proof. To derive
Lemma 3.1 from the proof of Proposition 2.12 it suffices to show that

PDy(Gri(NY) = f* —xi A7 4 (=D x (3.1

To prove (3.1) we denote P Dy (Gri(N)) by a polynomial Py (f. xq,....x¢). By con-
sidering the restriction of P Dy (Gri(N)) to the small orbit Gry (N) we conclude that
the lowest term (free of f)of Py is (—1 ¥ x4. To define the other terms of P, we consider
the restriction of P Dy (Gri(N)) = P to the submanifold M C M, which is the C P¥
bundle over Gry_ (N — 1). Let M’ be a submanifold of M which is defined as M but
over Gry— (N — 1). Using the formula

(Pi)yg = PDy(Gri— (N = 1)) = PDyg(M") - PDyyGri (N = 1)

and the fact thatP D (M') = f, we conclude (by using the induction step) that Py
equals RHS of (3.1).

(ii) It is well known that Nx; is a symplectic class in H2(Gri(N), R). By checking the
non-degeneracy of the family of U (N)-invariant forms (Nx; + t(k + 1) f) at a point
T.((UNY)/U) x Utk — 1) x U(N — k) we conclude that the condition for the
existence of an invariant symplectic form in the proof of Proposition 2.12 holds. Hence
M admits a G-invariant monotone symplectic structure.

According to a general principle for computing the small quantum cohomology ring of

a monotone symplectic manifold (M, w) we need to compute only the quantum relations

[ST,W]. More precisely, let g;(z1, ..., z;y) be polynomials generating the relations ideal of

the cohomology algebra H*(M, C) generated by {z;}. Then z; are also generators of the

small quantum algebra Q H*(M, C) = H*(M, C) ® Z[q] with the new relations g;(z;) =

q P;i(zi, ¢). Here ¢ is the quantum variable, ¢; is the polynomial defined by g; with respect

to the quantum productin Q H*(M, C). Denote the quantum product by ». There are several

equivalent approachs to small quantum cohomology but we use notations (and formalism)
in [MS].

Theorem 3.2. Let M satisfy the condition 2(k + 1) = N — 1 and as before, let Py denote
the Poincare dual to Gri(N). Then its small quantum cohomology ring is isomorphic to

C[f,xl,...,xk,q]

QH"(M) = — <
(f * Pk =G, YN<kt1+ -2 YN=1, yN = (=D*H1g2 f)

Proof. Recall that (see e.g. [McDS]) the moduli space M 4(M) of holomorphic spheres
realizing class A € Ho(M, Z) gives a non-trivial contribution the quantum product of a x b,
a,b € H*(M, ), if there is an element ¢ € H*(M,C) such that the Gromov—Wiiten
invariant ® 4 (P D(a), P D(b), P D(c)) # 0. In this case we have

deg (a) + deg (b) < dim M + 2¢((A) < dega +degh + dim M, 3.2)

which is also called a degree (dimension) condition.
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Recall that in our case the minimal Chern number of M is (& == 1), Thus from (3.2,
Lemma 3.1 and the monotonicity condition we see immediately that il the moduli space
M (M) has anon-trivial contribution to the quantum relation then 0 < ¢ e = 20k + 1),
Hence A must be one of the five tollowing homology classes,

(C1) the homology class [u] generating the homology group A0 P4 7y = 7 of the fiber
Crh

(C2) class 2ul:

(C3) class [v] which can be realized as a holomorphic sphere on one singular orbit (o
which is diffeomorphic to Gri(N) (see also the previous section):

(C4) the (exceptional) class o] — [u].

(C5) the (double exceptional) class 2t v} — fu]).

Note that [ir] and [v] are the generators of Ha(M . 7)) = 2 3 £,

&

Let us consider the moduli space of holomorphic spheres in class [a]. TUIS casy 1o see
that with respect to the standard integrable complex structure J on M the J-holomorphic
spheres realizing this class [ie] are exactly the complex lines of the fiber 725 The sim-
plest way to see this is to look at the projection of these holomorphic spheres on the base
Gri(N). (It may be possible to see this by using the curvature estimate in [L]. This cur-
vature estimate could be able to show that the minimal sectional curvature distribution in
M consists of 2-planes in the tangent space of the fiber £ P4 Using the same curvature
estimate we have characterized the space of holomorphic spheres off minimal degree in
complex Grassmannian and other complex symmetric spaces [L[ as the space of Helea-
son spheres.) A simple computation shows that the virtual dimension of the moduli space
M ACP. M) of J-holomorphic spheres realizing [u| equals the real dimension of this
space and equals 2(k + 1) ++ 25 + 2N (N — k). We can also apply the regularity criterion
HYUCP'. f(T.My) = HYUCP'. (7. (LPY) = 0. Here £ is a J-holomorphic map
CP' — M and f is its restriction on the fiber C P4,

Now let us compute the contribution of the moduli space M, ;(M) o the quantum
relations. First we note that by dimenston reason the quantum polvnomial of degree fess
than (k 4+ 1) must coincide with the usual polynomial (in the ring H7(M. ). Thus 1o
compute the contribution of M, (M) to the first defining relation it suffices to compute
the following Gromov—Witten invariants with 1 </ < &k + 1

CD|,,|(PD(.)"/). PD(xi-y . pr. C{3.3w)
S (PDY PO p. (3.3h)

We claim that the Gromov-Witlen invariant in (3.3a) equals zero. We observe that
PDay(xvpo—g) = j° WP Dg (s ). where as in the previous section we denote by
the projection ot M 10 Gri(N). Hence. taking into account that [u| is a “fiber™ class we see
immediately. by dimension reason. that there is no holomorphic curve in class || which
intersects j (P Dy vy and gocs through a PD(_I" ).

We claim that the Gromov—Witten invariant in (3.3b) equals 1. To prove this we fix a
fiber C P* which contains the given point pr. We observe that the singular orbit representing
P P ( ) intersects with cach fiber TP atadivisorC P Finally we note that P Dy f ky
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intersects with the fixed CP¥ at one point because f*([CP*~!]) = 1. Since there is exactly

one complex line through the given two points in CP” (and this line always intersects the

divisor CP¥~! c CP*) we deduce that the Gromov—Witten invariant in (3.3b) is 1.
Summarizing we get

fru Pc=gq (3.3c)

(here the LHS of (3.3¢c) denotes the quantum polynomial, deformed by [u]).
Next we shall compute the contribution of M, to the “old” defining relation y;, j =
N —k + 1, N. First we shall show that

Q) (PDy(xp), PDy(yj—p). PDyiw]) =0 (3.3d)

for any (w] € H*(M) with degree equal dim M + 2(k + 1) — 2j. Using the formula
PDy[j*(y)] = j~' P Dg[y] for the Poincare dual of a pull-back cohomology class of the
base of a fiber bundle we observe that if (3.1) is not zero then PDp[w]) N PDyps(xp) N
PDp(yj—p) # 9. But it is impossible by the dimension reason.

Thus there remain possibly four other non-trivial contributions to the quantum relations.
The first one is related to the Gromov—Witten invariants

D2u)(PDp(xp), PDy(yj—p), PDy(w)), (34)
the second to the Gromov—Witten invariants
D11 (P Dy (xp), PDp(yj—p), PDy(w)), (3.5)

and the two other Gromov—Witten invariants related to the (exceptional) classes [v] — [u]
and 2([v] — [u]).

Here in the cases (C2) and (C3) the degree of w must be dim M + 4(k + 1) — 2.

To compute (C2) we use a generic almost complex structure Jiey nearby the integrable
one. Thus the image of Jieg-holomorphic spheres in class 2[u] must in a (arbitrary) small
neighborhood of a complex line in the fiber C P*, thatis the projection of a Jreg-holomorphic
sphere in class [#] must be in a ball of radius £/2. Now we can use the same argument as
before. Since P Dp(xp) N PDy{(y;j—p) N P Dy (w) = B there exists a positive number &
such that the e-neighborhood of these cycles also do not have a common point. Now looking
at the projection of these cycles on the base Gry (N) we conclude that the contribution (C2)
is zero.

In order to compute the contribution (C3) we need to know the moduli space of the
holomorphic spheres in class [v] whose dimension is dim M + 4(k + 1) = dim Gri(N)
+ 6k + 4 = dim Gri(N) + 2N + 2(k — 1). We pick up the standard integrable complex
structure. We claim that all these holomorphic spheres can be realized as holomorphic
sections of C P*-bundle over CP[IU], where CP[L] is a holomorphic sphere of minimal degree
in Gri(N). Indeed over this CP! the bundle C P is the projectivization of the sum of (k+ 1)
holomorphic line bundles with k¢ Chern numbers being 0 and one number being (—1). Thus
for any holomorphic sphere (S%, f) which is a holomorphic section of the CP* bundle
over CP! we have H'(S2, f*(T.M)) = H'(S2, f*(T.CP*)) = 0. To show that these
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holomorphic sections exhaust all the holomorphic spheres in the class [v] we look at their
projection on the base Gri(N).

Now let us to compute (C3) with j = N — 1 or j = N (by dimension condition (3.2)
those are the only cases which may enter into the quantum relations).

If j = N — 1 then the contribution in (C3) must be 0 since we know that on the base
B = Gr¢(N) there is no holomorphic curve of minimal degree which go through the cycle
PDpg(xp) and PDg(yn_p—1) (by dimension reason).

If j = N then there are two possibilities for P Dy (w), namely they are [1] and [v] — the
generators of H2(M, Z).

Let us consider the first case, i.e. P Dy (w) is a holomorphic sphere u in the fiber CP*.
The induction argument on Gry(N) {ST,W] shows that p in (C3) must be k and there is a
unique (up to projection j) holomorphic sphere in class [v] which intersects with P D (xi)
and P Dy (yv—x) and satisfies the following property: Its image under the projection j
goes through the fixed point j(#) € Gry(N). Hence we can reduce our computation of
the corresponding contribution in (C3) to the related Gromov—-Witten invariant in the CP*-
bundle over CP[lv]. Thus we get

@11 (P Dy (xk), PDp(yn—s), [#]) = (=D*FL. (3.6a)

Now let us consider the second case, i.e. P Dy (w) is the class [v] realized by a holomorphic
section of the CP*-bundle over the CP!. Clearly there is only one holomorphic section
passing through a given point in this bundle. Thus we get

@ (PDy(xk), PDy(yn—i), [v]) = (= DL (3.6b)

In order to compute (C4) let us consider the meduli space of holomorphic spheres in the
class [v] — [#]. We have two arguments to show that there is no J-holomorphic sphere in
this class. The simplest argument was suggested by Kaoru Ono. Namely considering the
intersection of a holomorphic sphere in this class with the big singular orbit U (V) /(U (1) x
Uk — 1) x U(N — k)) yields that there is no holomorphic sphere in this class. The another
(longer) argument uses the area comparison. Clearly the area of such a holomorphic sphere
equals the value w([v] — [«]). On the other hand the projection to Gri(N) of a holomorphic
sphere in this class has area w([v]) > w([v] — [#]). (The projection decreases the area
because of Duistermaat—-Heckman theorem applied to our monotone case.) Thus there is
no J-holomorphic sphere in this class. Since the class [u] — [v] is indecomposable in the
Gromov sense it follows from the Gromov compactness theorem that for nearby generic
almost complex structure Ji,, there is also no Ji.,-holomorphic sphere. Thus there is no
quantum contribution of this class.

Finally to compute (C5) we consider the quantum contribution associated to the class
2([v] — [«]). The space of J-holomorphic spheres in this class is empty by the same reason
as above (two arguments). Finally by using the Gromov compactness theorem we can show
the existence of a regular almost complex structure Jieg nearby J such that there is 10 Jyeg-
holomorphic sphere in this class. (Because if bubbling happens, they must be holomorphic
spheres in class [v] — [u], which is also impossible.)
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Summarizing we get that the only new quantum relations are those involving (3.3e).
(3.5a) and (3.5b). Note that f is defined uniquely by the condition f (i) = | = f(v). This
completes the proof of Theorem 3.2. |

Remark 3.3. Since the rank of H2(M) is 2 it is more convenient to take two guantum
variables ¢). ¢2. In this case our computations give a (slightly) formal different answer,
namely (R2) = ¢ and vy = (—1)“1(6/,2]‘] + qufz). Here f) and #> form a basis of
Hom (H»(M.C).C) = H>(M.C) which is dual to the basis ul. [vh € HA (M. C).

Remark 3.4. Let M be a symplectic manifold as in Theorem 3.2.

(i) It follows immediately from Theorem 3.2 and Schwarz’s result [ Sch] that the any exact
symplectomorphism on M has at least & + 1 fixed points.

(it) Itseems thatafter alittle work we can apply the resultin [HV ] to show that the Weinstein
conjecture also holds for those M.

4. Compact symplectic manifolds admitting symplectic action of cohomogeneity 2

A direct product of (M. w) and (Ma. w2} is a symplectic manifold which admits a
symplectic action of cohomogeneity 2 provided that either both (M;. w;) admit symplectic
action of cohomogeneity | or (M. @) is ahomogeneous symplectic manifold and (M>. w»)
has dimension 2. These examples are extremally opposite in a sense that. in the first case
the normal bundle of any regular orbit is isotropic, and in the second case the normal bundle
is symplectic.

Proposition 4.1. Suppose that an action of G on (M>" . w) is Hamiltonian and dim M/ G =
2. Then either all the principal orbits of G are svmplectic (simultaneousiy), or all the
principal orbits of G are coisotropic (simultaneously). In the first case a principal orbit is
isomorphic to a coadjoint orbit of G, in the last case a principal orbir must be a T2 -bundle

over a coadjoint orbit of G.

Proof. Since the set M'™¢ of regular points in M>" is open and dense in M~". and the
property of being symplectic is an open condition, it suffices to show that there is an open.
dense. G-invariant set M C M"™* such that all the orbit G(x) C M is symplectic (or
coisotropic simultaneously). We consider the moment map y : M> — ¢* = g¢. By
Sard’s theorem the set S, of points x in M where the dimension d of g~ ()} is
maximal. is open and dense in M>". Let M/rfg be the set in M consists of points x such
that 1 (G(x)) is a orbit of maximal dimension in (M). Using Kirwan’s theorem we see
that M,'f‘ 1s an open and dense set in M. We claim that we can take M as the intersection
of §,, with M,'f‘ and the set of regular points in M>". Using formula (2.3) we note that
d = 2. Since the dimensions of G{x) and of j(G(x)) are even if v € M . we get that
d must be either 0 or 2. First we suppose that ¢ = 0. Since G is connected all the other
principal orbit G(m’) in M also connected. and since (G (m)) is simply connected. all
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the principal orbits in M must be diffeomorphic to (G (m)) (and hence are symplectic).
Clearly it orbit is symplectic then the restriction of G-action on it is also Hamiltonian. thus
by Kirillov—Kostant—-Sourriau theorem. it must be isomorphic to a coadjoint orbit of G.
Now let us assume that the “generic™ dimension d of w {p ) is 2. Since the dimension
of (G (x}) is aconstant for v € M | we conclude that either all G(x). forx € M is either
symplectic simultancously or isotropic simultaneously. In the last case 1~ {j(v)) € Gv)
and p(G(x)) = G(_\')/;F' {pe(x)}. Arguing as in the proof of Proposition 2.1 we see that
i M) admits a nowhere zero vector ficlds sgrad Fy., and sgrad F... Thus it must be
an isolropic torus. O

Remark 4.2.

(1) The quotient space p(M)/G is either a point or a convex two-dimensional polytop.

(1) If the action of G is Hamiltonian and the principal orbit is symplectic then the condition
that ;£(M)/ G is a point is equivalent to the tact that d (in the proof ot Proposition 4.1)
equals 2. In this case M is diffeomorphic to a bundle over a coadjoint orbit of G whose
fiber is a two-dimensional surface.

The first statement in Remark 4.2 follows from the proot of Proposition 4.1 and Kirwan's
theorem on convexity of moment map. The second statement follows by considering the
moment map.

Proposition 4.3. Suppose that the action of G is Hamiltonian, the number d (in the proof
of Proposition 4.1} is zero and the action of G on (M) has oniy one orbit tvpe. Then
M is G-diffeomorphic to a fiber bundle over a two-dimensional surfuce X whose fiber is

isomorphic to a coadjoint orbit of G.

Indeed. by the dimension reason in this case there is also only one orbit type of G-action
on M. Note that such a bundle always admits a G-invariant symplectic structure.

I the principal orbits of G in M are coisotropic then P = p(M)/G is always a two-
dimensional convex polytop.

Proposition 4.4. If the action of G on M is Hamiltonian and the principal orbit of G is
coisotropic then M is diffeomorphic to the bundle of ruled surfuce over a coadjoint orbii
of G provided that the action of G on (M) has only one orbit ivpe.

Proof. In this case M admits a projection 7w over a coadjoint orbit (G (m)) with tiber

— . . . . . . . hl . .
7~ Ubeing a symplectic 4-manifold. This symplectic 4-manifold admits a 7°-Hamiltonian
action. Hence it must be a rational or ruled surface (see [Au}). O

Appendix A. Homogeneous symplectic spaces of compact Lie groups

First we recall a theorem of Kirillov—Kostant-Sourriau (see e.g. | Kirl).
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Theorem A.l. A symplectic manifold admitting a Hamiltonian homogeneous action of a
connected Lie group G is isomorphic to a covering of a coadjoint orbit of G.

If G is a connected compact Lie group then all its coadjoint orbits are simply connected.
Thus in this case we have the following simple result.

Corollary A.2. A symplectic manifold admitting a Hamiltonian homogeneous action of a
connected compact Lie group G is a coadjoint orbit of G.

Table A.3. We present here a list of all coadjoint orbits of simple compact Lie groups. Recall
that a coadjoint orbit through v € g can be identified with the homogeneous space G/Z(v)
with Z(v) being the centralizer of v in G. Element v in a Cartan algebra Lie TX C g is
regular iff for all root « of g we have a(v) # 0. In this case Z(v) is the maximal torus T* of
G. If v is a singular element with «; (v) = O then Lie Z(v) is a direct sum of the subalgebra
in g generated by the roots «; and Lie T*. To identify the type of this subalgebra Lie Z(v)
we observe that Lie T is its Cartan subalgebra and the root system of Lie Z(v) consists
of those roots & of G such that «(v) = 0. Looking at tables of roots of simple Lie algebras
[OV] and their Dynkin schemes we get easily the following list (which perhaps could be
found somewhere else)

(A)If G = SUpqr then Z(v) = S(Up; x -+ x Uy, 3ni =n+ 1.

(B), (C),(D)If Gisin By, Zy, or D, then Z(v) is a direct product U,, x - -+ x Uy, x Gp
withrkG, + 3 n; = rkG, and G, and G must be from the same series (B), (C), (D).

Analogously but more combinatorically complicated are the types of Z(v) in the excep-
tional series. Note that all the listed below simple exceptional groups are simply connected.

(Es) Except the regular orbits with Z (v) = T we also have other possible singular orbits
with Z(v) = S(Ug, x - x Uy, ) withn > 2, k; =7 and TX x Sping_x withk = 1, 2.

(E7) Analogously. Possible are also Z(v) = T x SUy x Spinjgand Z(v) = T! x Eg.

(Eg) Analogously. Possible are also T! x E7 and T! % SU; x Eg.

(F3) Singular orbits can have Z(v) being T2 x SU3, T? x SUy x SU; or T! x Sping
and T! x Sp;.

(G2) Except the regular orbit G,/ T? there are also singular orbit G,/SUs x T,

To compute the cohomology ring of G/Z(v) we use:

Proposition A.4 [Bo, Theorem 26.1].

(i) The cohomology algebra H(G/Z(v), R) is a factor-aigebra Sz, over the ideal gen-
erated by p’,‘Q(Sg ) which equals the characteristic subalgebra.

(ii) Letsy—1,...,s;—landcorrespondingly, ri—1, ..., rj—1 bedegree of the generators
in H*(G) and H*(Z(v)). Then the Poincare polynomial of G /Z (v) equals

(1= (1 =1%) |
(=)o (1 =)’
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Here S¢ is the algebra of G-invariant polynomials in g and Sg is its subalgebra which
is generated by monomials of positive degree.

Remark A.5. All the G-invariant symplectic form on G/Z(v) are compatible with the
(obvious) G-invariant complex structure. Thus all of them are deformation equivalent to a
monotone symplectic form.

Remark A.6. For any symplectic form w on a homogeneous space M?" of a compact Lie
group G the averaged form w® is a G-invariant symplectic form in the same cohomology
class [w]. Thus the necessary and sufficient condition for the existence of a symplectic form
in a cohomology class [w] € H?(M%", R) is that [w]" > 0. As another consequence we see
that any homogeneous space of a compact Lie group which admits a symplectic structure
is diffeomorphic to a homogeneous symplectic manifold. But it is not true for a compact
manifold of cohomogeneity 1 (or higher cohomogeneity). For example CP?#C P2 admits
a SU(3) action of cohomogeneity 1 (with no fixed point) but no symplectic form invariant
under this action.
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