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Abstract 

In this note we describe the equivariant diffeomorphism types of compact symplectic manifolds 
A4 which admit a Hamiltonian action of a connected compact Lie group G such that the quotient 
space M/G has dimension 1. For a class of these manifolds we compute their small quantum 
cohomology algebra. We also construct some symplectic manifolds of cohomogeneity 2. 0 1998 
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1. Introduction 

An action of a Lie group G on a manifold M is called of cohomogeneity k if the regular 
(principal) G-orbits have codimension k in M. In other words the orbit space M/G has 
dimension k. It is well known (see e.g. [Kir]) that homogeneous symplectic manifolds are 
locally symplectomorphic to coadjoint orbits of Lie groups whose symplectic geometry 
can be investigated in many aspects [Gr,HV,GK]. Our motivation is to find a wider class 
of symplectic manifolds via group approach, so that they could serve as test examples for 
many questions in symplectic geometry (and symplectic topology). In this note we describe 
all compact symplectic manifolds admitting a Hamiltonian action with cohomogeneity 1 
of a connected compact Lie group. We always assume that the action is effective. We 
also remark that 4-manifolds admitting symplectic group actions (of cohomogeneity 1 or 
of S’-action) have been studied intensively by many authors, see [Au] for references. In 
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particular the classification of compact symplectic 4-manifolds admitting S0(3)-action of 
cohomogeneity 1 was done by Iglesias [I]. 

Let us recall that if an action of a Lie group G on (M, w) preserves the symplectic form 
w then there is a Lie algebra homomorphism 

g = LieG 3 Vect,,(M), (1.1) 

where VW,(M) denotes the Lie algebra of symplectic vector fields. The action of G is 
said to be ulmost Hamiltonian if the image of .E* lies in the subalgebra &c&,(M) of 

Hamiltonian vector fields. Finally, if the map F* can be lifted to a homomorphism g 5 
C?(M, R) (i.e. F*u = s~~ud F[,) then the action of G is called Humiltoniun. In this note 
we shall prove the following theorem. 

Theorem 1.1. Suppose that a connected compact symplectic marCfold (M. w) is provided 
with a Hamiltonian action of a connected compact Lie group G such that dim Ml G = I. 
Then M is G-difeomorphic either to a G-invariant bundle over a coadjoint orbit qf G whose 

fiber is a complex projective manifold, or to a symplectic blow-down of such a bundle along 
two singular G-orbits. 

The main ingredients of our proof are the existence of the moment map, Duistermaat’s- 
Heckman’s theorem [DH] and the convexity theorem of Kirwan [Kiw]. For certain G- 
diffeomorphism types of these spaces we shall give a complete classification up to equiv- 
ariant symplectomorphism (see Section 2). 

In Section 3 we give a computation of the (small) quantum cohomology ring of some 
spaces admitting a Hamiltonian CT,,-action with cohomogeneity 1 and discuss its corollaries. 

We also consider the case of a symplectic action of cohomogeneity 2. In particular we get: 

Theorem 1.2. Suppose that a connected compact symplectic man@ld M is provided with u 
Hamiltonian action of u connected compact Lie group G such that dim Ml G = 2. Then all 
the principul orbits qf G must be either (simultaneously) coisotropic or (simultuneously) 
symplectic. Thus a principal orbit of G is either d@eomorphic to a T2-bundle over a 
coadjoint orbit of G (in the jrst case) or difeomorphic to a coadjoint orbit of G (in the 
second case). 

At the end of our note we collect in Appendix A some useful facts of the symplectic 
structures on the coadjoint orbits of compact Lie groups. 

2. Classification of compact symplectic manifolds admitting a Hamiltonian action 
with cohomogeneity 1 of a connected compact Lie group 

It is known [Br] that if an action of a compact Lie group G on a connected compact oriented 
manifold M has cohomogeneity I (i.e. dim M/G = 1) then the topological space Q = 
M/G = n(M) must be either diffeomorphic to the interval [0, I] or a circle S’. The slice 
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theorem gives us immediately that G(m) is a principal orbit if and only if the image n(G(m)) 
in Q is a interior point. In what follows we assume that (M, w) is symplectic and the action of 
G on M is Hamiltonian. Under this assumption the quotient Q is [0, I] (see the proof below). 

Proposition 2.1. Let G(m) be a principal orbit of a Hamiltonian G-action on (AI*“, co). 
Then G(m) is a S’ -bundle over a coadjoint orbit of G. 

Proo$ In this case there exists a moment map 

M*” 3 g* : (p(m), w) = 3!,.(m). (2.1) 

For a vector V E T,G(m) there is a vector u E R such that V = d/dtr=o(exptu) = 
sgrad 3L,. Hence we get 

(l**(V), w) = d3u,(V) = ]3ul, 3,1(m) = ([zu, ~1, w.(m)), (2.2) 

which implies that p is an equivariant map. Therefore the image p(G(m)) of any orbit 
G(m) on M is an adjoint orbit G(p(m)) c g*. 

To complete the proof of Proposition 2. I we look at the preimage p”-’ (p(m)}. 

Lemma 2.2. The preimage p-’ (w(m)) is a closed subman@ld of dimension at most I in 
M. !f the preimage has dimension I then it is an orbit of a connected subgroup $, c G. 

Proo$ Clearly the preimage is a closed subset. We shall show that its dimension is at most 
I. Let V be a non-zero tangent vector to the preimage b-‘{p(m)) at X. Then p*(V) = 0. 
Using the formula 

(p,(V), w) = d3u,(V) = w(sgrad31,,, V) (2.3) 

for all w E I: we conclude that V is also a tangent vector to G(m) and moreover V 
annihilates the space span ( d3‘, 1 a E g) which has codimension I in T*M. This proves 
the first statement. In particular there is an element V E R such that V = sgrad 36. Our 
claim on the manifold structure now follows from the fact that exp TV c p-’ (p(m)). 
This fact also yields the last statement on the orbit structure of the preimage. Finally, the 
preimage is connected because the quotient p(G(m)) = G(m)/{@-‘J is simply connected 
(see Appendix A) and G(m) is connected. 0 

Proqf of Proposition 2. I (conclusion). Now by dimension reason, if m is a regular point of 
the G-action (i.e. m is in a principal G-orbit) then p-’ (p(m)) is a circle. This completes 
the proof of Proposition 2.1. ??

Since G is compact we can identify the coalgebra R* with g via the Killing form. From the 
well-known convexity property of the moment map (see e.g. [Kiw]) we see that the quotient 
Q = M/G is canonically diffeomorphic to the intersection of the image of the moment map 
p(M) with a Weyl chamber W in a Cartan subalgebra Lie T c g (alternatively we can use 
Lemma 2.2 to get the diffeomorphism between two quotient spaces: M/G and p(M)/G). 
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We shall improve Proposition 2.1 (see also Remark 2.15) in the following proposition, 
which is important for our construction of G-invariant symplectic structures. Let m be a 
regular point of the G-action. 

Proposition 2.3. There is a Hamiltonian S’ -action on M such that G(p(m)) is a symplectic 
quotient of M under this S’ -action. 

Proof It suffices to show that there is a Hamiltonian Sl-action on M such that the orbit 
G(m) coincides with the level set of a Hamiltonian function generating this S’-action, 
and moreover the S’-orbit through m E M coincides with the preimage p-‘(p(m)}. To 
construct a Hamiltonian function which generates this action we use the following simple 
lemma, a proof of it can be found in [McDS]. 

Lemma 2.4, There is a compatible to w almost complex structure J on M which is G- 
invariant. 

Proof of Proposition 2.3 (continued). Now let HG be a (unique up to constant and up to 
sign) G-invariant function on M which satisfies the following condition: 

2~7 II grad HG II= L(cL-‘bL(m)J), (2.4) 

where L(.) denotes the length for the metric defined by (X, Y) = w(X, JY). It is easy to 
see that HG generates the required Hamiltonian S’ -action. Clearly the symplectic form on 
M descends to a symplectic form on the quotient G(m)/S’ = p(G(m)). 0 

Remark 2.5. 
(i) We also note that the stabilizer St of this coadjoint orbit p(G(m)) is the product 

G, SA, where G, is the stabilizer of the orbit G(m) c M, and SA is a subgroup in 
G, generating the flows p”-’ {p(m)) (Lemma 2.2). More precisely, since St is connected 
and dim SA = 1, St is the “almost” direct product of the connected component Gk 
of G, with Sk. Here “almost” means that on the level of Lie algebras the product is 
direct, and hence Gi intersects with Sk at a finite group ‘2:. Since G, c St we get 

that G, fl S,‘, = Z, 3 zy. 

(ii) The (“new”) moment map ~~1 determined by the S’-action associated to HG also 
defines a diffeomorphism between Ml G and the image PG (M). 

(iii) The Chern number of the S’-fibration G/Cm -+ G/St is zero if and only if G is an 
almost product of SA and a subgroup G’ c G. In general, by Duistermaat-Heckman 
theorem this Chem number is defined uniquely by the intersection of p(M) with a 
Weyl chamber. 

We have seen that if an action of G on (M, o) is Hamiltonian with cohomogeneity 1 
then the quotient space M/G can be identified with the intersection of p(M) with a Weyl 
chamber. Hence G acts on the image p(M) of M with at most three orbit types: a regular 
one G/Z(u) is the image of a regular orbit G(m) c M and possibly other two orbit types 

G/Z,l, and G/Z,,, which are also coadjoint orbits of G. Henceforth we get: 
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Lemma 2.6. There are only four possible cases: 

(I) Z(v) z Zmin g Gnax, 

(11) Z(v) LZ 4th C &nam 

(III) Z(v) 2 z,,, c zmin, 

(IV) Zm3.x 3 Z(v) C Zmin. 
(Here “2 ” stands for conjugacy.) 

Now we shall describe M according to four cases in Lemma 2.6. 
Case (I): All symplectic quotients G(m)/S’ are G-diffeomorphic. In this case by di- 

mension reason and the fact that G/Z(v) is simply connected, we see immediately that 
a singular orbit G(m’) is G-diffeomorphic to its image p(G(m’)) = G/Z(u). To specify 
the G-diffeomorphism type of M it is useful to use the notion of segment [AA]. In our 
case we just consider the gradient flow of the function HG on M. After a completion and 
a reparametrization we get a geodesic segment [s(t)], t E [0, 11, in M such that the stabi- 
lizer of all the interior point s(t), t E (0, I), coincide with, say, G,. (We observe that both 
[s(t)] and the geodesic through m with the initial vector grad HG(m) are characterized by 
the condition that every point in them is a fixed point of G,.) Denote by Go and Gl the 
stabilizers at singular points s(O) and s( 1). Looking at the image of the gradient flow of 
grad HG under the moment map p we conclude that Go = G 1. 

Proposition 2.7. In case (I) M is G-diffeomorphic to G x G,, S*, where Go = (Gi x Sk)@ 

is the almost direct product of Gk and Sk, and the left action of Go on S* is obtained via 
the composition of the projections Go -+ S,!, /Zi with a Hamiltonian action of Sh/Rz 

on S*. 

Pro05 First we identify the singular orbits in M and in G x co S*. The segment [s(t)] 

extends this diffeomorphism to a diffeomorphism between M and Gx~oS2. Since HG is 
G-invariant it follows that this diffeomorphism is G-diffeomorphism. 0 

Now let us compute the cohomology ring H*(M, rW) ( for M in case (I)). Once we 
fix a Weyl chamber we get a canonical G-invariant projection n,: p(M) + p(G(mo)), 
where G(mo) = G/Go is a singular orbit in M. Let j := l7, o F denote the projection 
M -+ B := p(G(mo)) = G/Z(u) 2 G(mo). G eometrically j(x) = j(FL-l (p(x))) is 
the limit of the flow generated by grad HG passing through n. Note that G(mo) is the 
image of a section s : B -+ M of our S*-bundle, and in what follows we shall identify 
the base B with its section G(mo). Let f denote the Poincare dual to the homology class 

]G(mo)l E H*(M, R). 
Let xc E H*(p(G(mo)), rW) be the image of the Chem class of the S’-bundle G(m) + 

G(mo), where G(m) is a regular orbit G/Cm (or in other words, x0 is the Chem class of 
the normal bundle over G(mo) with the induced (almost) complex structure). 

Let {Xi, RI} denote the set of generators and their relations in cohomology ring 
H*(p(G(mo)), [w) (see [Bo], correspondingly Proposition A.4 in Appendix A). 



(2.5) 

The oni~ mmtrivial rrlatiorz in the algebra H* (M. iw) me (R 1 ), (R2), with 

.f‘(.f’ - .i*(xo)) = 0. W) 

Proc?f: Statement (2.5) on the additive structure of H*(M, [w) follows from the triviality 
of the cohomology spectral sequence of our S2-bundle. Clearly (RI) remains the relation 
between the generators (j*(xi)} in H*(M, 17%). To show that relation (R2) holds we have two 
arguments. One is in the proof of Lemma 2.13 and the other is here. Using the intersection 
formula for xu we notice that the restriction of (.f’ - j*(xu)) to G(mu) is trivial. Thus to get 
relation (R2) it is enough to verify that the value of LHS of (R2) on the cycles in M of the 
forms j-‘([Cl) is always zero, where [C] E H2(B, Z). Denote by PDM(.) the Poincare 
dual in M. From the identity 

(P&(]G(J~o)]))’ = pD~(]G(mo) n G(m)l) = PDM[PDB(~o)I 

we get ,f” = P DM[ PDB(xo)]. Now it follows that 

.f’“(j? ([Cl)) = .f’(lCl). (R2a) 

On the other hand, since the restriction of the 2-form representing j*(xu) to the fiber 
S’ is vanished, we can apply the Fubini formula to the integration of a differential form 
representing the class .f’ j*(xo) (we can assume that [C] is represented by a pseudo- 
manifold). in the result we get that 

.f’ . j*(.ro)(jp’([Cl)) = xo(lCI)) = .f’([cl). W’b) 

Thus (R2) is a relation in H*(M, [w). Finally the statement that (R2) is the only “new” 
relation in H”(M, [w) follows from the triviality of our spectral sequence. 0 

Remark 2.9. 
(i) If we take the other singular orbit G(m)) = G/G, then the Chem class of the S’- 

bundle : G(m) + G(mt) is -x0 (after an obvious identification G(me) with G(mt) 
since G(m 1) can be considered as another section (at infinity) of our S2-bundle). It is 
also easy to see that the restriction of ,f’ on G(m t ) is zero since G(mo) has no common 
point with G(nz I). 

(ii) If S,:, is a normal subgroup of G then M is a direct product G/Go x S*. In this case any 
G-invariant metric on M = G x ~~~ S’ can be recovered from a G-invariant metric on 
G/Go and an S,i]-invariant metric on the fiber S2. If Si, is not a normal subgroup of G 
then there is an element g E G such that Ad,y(Lie S,:,) # Lie S,:,. This implies that a 
G-invariant metric on S’-tibration G/G:, is defined uniquely by the quotient metric on 
G/Go. In this case the space of G-invariant metrics on M is one-to-one corresponding 
to the space of G-invariant metrics in the image of M under the moment map CL. Here 
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we observe that the foliation p-’ (p(m)} (and hence the quotient M/S’ = M/I.L~‘(~)) 
can be defined intrinsically by the action of G on M (see Lemma 2.13). 

Proposition 2.10. Let M’” be in case (I) of Lemma 2.6 und let us keep the notation in 
Proposition 2.8,fijr M. Then M 2n udmits a G-invariant svmplectic fijrrn w in a class [w] E 
H2(M2”. R) if und on1.y if [w] = j*(x) + a . f’ with CY ; 0, and (x + t cx ,Q)‘~-’ > 0 
for all t E [0, I]. In particular M 2rr ahvuvs admits a G-invariant sympluctic structure such 
that thr action of G on M is Hamiltonian. 

Prot$ Let [w] = j*(x) + u. .f with x E H2(G/Go, R). The condition that (Y > 0 follows 
from the fact that the restriction of w to each fiber S2 is positive. (Here we assume that the 
orientation of M agrees with that of G(m) and the frame (grad HG, .sgrudHc). The last 
frame is a frame of tangent space to the fiber S2.) Thus the “only if” statement now follows 
trivially from the Duistermaat-Heckman theorem. 

Now let us assume that the class [w] satisfies the condition in Proposition 2. IO. Clearly all 
these cohomology classes (x + t .cx .x0), 0 5 t 5 1, are realized by G-invariant symplectic 
forms by our condition (see also Remark AS). We fix a l-parameter family of G-invariant 
metrics on G/Go which are also compatible with these symplectic forms. According to 
Remark 2.9(ii) we can construct a G-invariant metric on M which compatible with this 
family of G-invariant metrics on G/Go. Lifting to M we can define the restriction W of w 
to each orbit G(nz). We normalize the G-invariant metric on M in the direction grad HG 
orthogonal to the orbit G(m) such that the following condition holds: 

grad Ho(w)(m) = -L(K’{p(m)I)j*xo, (2.6) 

where grad Ho := grad HG/ 11 grud HG. 11 ( we can normalize this metric by multiplying 
the length of grad HG with a positive function, because (Y > 0). By the construction W is a 
G-invariant 2-form on M whose rank is (n - 1). Denote by aft the G-invariant 2-form on 
M whose restriction to each fiber 5” is compatible with the restriction of the G-invariant 
metric to S’. We put w = U + (;Y,~G. By the construction w is a G-invariant 2-form of 
maximal rank on M. We claim that w is a symplectic form realizing the class j*(x) + a! .f’. 
To verify the closedness of w it suffices to establish the following identities: 

dw(sgrud Ho, grad Ho, VI) = 0, (2.7) 

dw(sgrad Ho. VI, V2) = 0, (2.8) 

dw(grad Ho, VI, V2) = 0, (2.9) 

dw(V1. V2, Vj) = 0. (2. IO) 

for all V; in the normal bundle to the fiber S’ and here sgrad Ho denotes the unite vector in 
ker&lcc,n), whose orientation agrees with that of the fiber S’. Using the formula 

3dw(X, Y. Z) = X(w(Y, Z)) + Y(w(Z, X)) + Z(o(X. Y)) 

- w(lX, Yl. Z) - w([Y, Zl, X) - w([Z, Xl. Y) 

we easily get that the LHS of (2.8) equals dWic;(,n) = 0. 

(2.1 I) 



212 H.v Lk?/Journal of Geometry and Physics 25 (1998) 205-226 

Applying (2.11) to (2.10) we also get that dw(Vt , V2, V3) = d&XVI, V2, V3) + dafG 
(VI ) v2, V3) = 0 + 0 = 0. 

To compute (2.7) we assume that vi is generated by the action of a l-parameter subgroup 
of G (acting on M). Taking into account that [sgrad HO, grad HO] E ker 0 we get 

-3dw(sgrad Ho, grad Ho, V) = crf^c([grad HO, V], sgrad Ho) 

- a.k([sgrad Ho, VI, grad HOI). (2.12) 

RHS of (2.12) is zero since aft is G-invariant. Hence (2.7) is zero. 
To compute (2.9) we also assume that Vi is generated by the action of a l-parameter 

subgroup of G. Since HG is G-invariant we get [vi, grad He] = 0 = [vi, grad Ho]. 
Applying (2.11) to LHS of (2.9) we get 

3dw(grad Ho, Vt, V2) = grad Ho(W(Vl, V2)) - af~G([v~, V21, grad Ho). 

(2.13) 

By the choice of crf~ the second term in RHS of (2.13) equals - (sgrud Ho, [VI, Vz]). 
Let us denote by M reg the set of regular points of the G-action on M. By the choice of Vi 

and 0 (see (2.6)) the first term in LHS of (2.13) equals (1/2x) d@(Vt, V2). L(p-‘(I}) 
= -(1/4rr)Q([Vt, V2]).L(~CL-1{~(m))),where~istheconnectionformontheS1-fibration 
Mreg. In the presence of the (lifted) S’ -invariant metric on Mreg we can take 19 ([VI, Vz]) as 

4x @ad Ho, [Vt , V~I)IUP-~ b-4~))). 
It follows that the LHS of (2.13) equals zero. This completes the proof of the closedness 

of w. Looking at the restriction of w to G(mt ) and G(mu) we conclude that w represents 
the class [j*(x) + a! . f]. 

The statement on the existence of a G-invariant symplectic structure follows from the 
fact that G/Go always admits a class x such that _F1 > 0. Since we can multiply x with 
a large positive constant h, the class (X + t~u)~-~ is also positive for all t E [0, 11 and we 
can apply the first statement here. 

The vanishing of the first Betti-number of M implies that the action of G is almost 
Hamiltonian and hence Hamiltonian because G is compact. 0 

Cases (II) and (III) (in Lemma 2.6): If we are interested in the G-diffeomorphism type 
then these cases are equivalent by changing the sign of the function HG. Thus we shall 
consider case (II): Z(v) = Zmin. (We can also consider case (I) as a subcase of case (II).) 
Since the two singular orbits are the critical level set for the function HG we get that at 
every singular point m E M the preimage b-l (I) consists of exactly one point. Hence 
G - Z,,, max - and Gmin = Zmin. Note that Gmax/Gres = Sk by the slice theorem. On the 
other hand we have Z(v) = G,, x S’ Because Z max/Z(u) is always of even dimension 
we have Z,,,/Z(u) = @P(k-‘)/2 = CP’. 

Lemma 2.11. In case (II) we have the following decompositions: G,,, = SlJl+l x Go, 
G reg = SUt x Go and Z, = S(Ul x Ul) x Go, where the inclusion SUl + S(lJl x Ul) -+ 
SUt+ 1 is standard. 
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Proof By checking Table A.3 (in Appendix A) of possible coadjoint orbit types we see 
that the pair (Z(u), Z,,, 2 G,,,) in case (II) can be only: 

Series (A): Z,,, = S(Ul+t x .. x U,,). Then Z(V) = S(Ur x S’ x .. . x U,,) and 
G,, = S(Ul x . . . x U,,,). 

Series (B), (D): Z,,, = Ut+l x . . . x SOznk+(i), Z(V) = Ut x UI x ... x SC&+(l) 
and G,, = U,, x . . . x So&+(t). 

Series (C): Analogous to (B) and (D). 
Exceptional case: The same (see Table A.3 in Appendix A). 
If G is a product of compact Lie groups then its coadjoint orbits are product of coadjoint 

orbits of each factors. It it well known that every compact group Lie admits a finite covering 
which is a product of a torus and compact simply connected Lie groups whose algebra are 
simple. Thus to prove Lemma 2.11 in general case it suffices to consider the above cases. 0 

The following proposition is an analog of Propositions 2.8 and 2.10. 

Proposition 2.12. Let M be in case (II). Then M is G-dt#eomorphic to a G-invariant 
C PI+’ -bundle over G/G,,,. There is a G-invariant symplectic structure on M and the 
action of G is Hamiltonian with respect to this structure. 

Proof To prove the first statement we consider the projection M --+ G/G,,,: x H 
p(x) H H(p(x)), where n is a canonical projection from p(M) to the singular coad- 
joint orbit G/G,,,. We recall that this canonical projection can be chosen by using the 
intersection of p(M) with a Weyl chamber (see [Kir]). By Lemma 2.11 the fiber of this 
projection is the sum D2(l”) U S2’+’ x I U CP” and isomorphic to @Pt+‘. Clearly this 
fiber consists of all trajectories of the flows grad HG which end up at a point in the singular 
orbit G/G,,, . Hence the action of G sends a fiber to a fiber. 

It is also easy to describe the cohomology algebra of M by the method in Proposition 2.8. 
Namely we denote by f the Poincare dual to the singular orbit G/G,i, of codimension 2 
in M. Since the singular orbit G/G,i, intersects the fiber CPt+’ at a hyperplane CP’, the 
restriction off on the fiber @Pt+’ is the generator of the cohomology group H2(CP”, R). 
Henceforth the ring H*(M, Ii!) is generated by {f, xi), where xi are the pull-back of the 
generators of the ring H*(G/G,,,, R) (compare (2.5)). Let (Rl) denote the relation be- 
tween xi in H*(G/Gmax, R), and let Pmin denote the Poincare dual to the singular orbit 
G/G,i” c M. Put (R2) = f Pmi,. It is easy to see (using the fact that two singular 
orbits have no common points and the associativity of the cap action) that (Rl) and (R2) 
are the only relation in H*(M, R). (Now apply to the case in Proposition 2.8 we observe 
that Pmi” = f - ~0.) 

To show the existence of a G-invariant symplectic structure on M we use the lifting 
construction of a family of invariant symplectic structures on G/G,,, as in the proof of 
Proposition 2.10. Here the main observation is the following. 

Lemma 2.13. Let G(m) be a principal orbit and pn denotes the projection from M \ 
(G/G,,,) -+ G/G,i, which is de3ned by the gradientflow of HG. Then the characteristic 
leafp-‘{p(m)) coincides with p,‘(m) f’ G(m). 
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Proof The projection of the gradient flow of HG is also a gradient how of a G-invariant 
function H on p(M). The slice theorem tells us that along the gradient flow of H all the 
stabilizer groups coincide. Hence follows statement. 0 

Proofof Proposition 2.12 (continued). Let [w] = x + u .f’ be an element in H’(A4, R). 
Clearly a necessary condition for the existence of a symplectic form w in the class [w] is 
that .K’ > 0, (Y > 0 and for all t E [O. I) we have that the restriction of the cohomology 
class (j*x + t a . ,f’) to the big orbit G/‘Gmin is also symplectic. (That follows from the 
Duistermaat-Heckman theorem or Kirwan’s theorem.) Here the restriction of ,f to the big 

orbit G/G,i, is the first Chern class of the S’-libration G(m) % G/G,,,in. Now let the 
class ]w] E H*(M, R) satisfy the above condition. Lifting the family of symplectic forms 
on the quotient (M \ (G/Gmax))/S’ we get a symplectic form on A4 \ (G/G,,,) (see the 
proof of Proposition 2.10). By the construction the lifted form extends continuously and 
non-degenerately on the whole M such that its restriction to the small orbit equals j*(x). 
The closedness is also automatically valid. Considering the restriction of the lifted form to 
the two singular orbits yields that our form realizes the cohomology class j*(x) + (Y . ,f. 

To show the existence of a G-invariant symplectic structure on M we use the fact that 
Gmax/Glnin = @P’. Under this condition we can find a G-invariant 2-form X in a class 
x E H2(G/G,,,, R) such that X is a G-invariant symplectic form and j*(X) + tf‘ is a G- 
invariant symplectic form realizing the cohomology class j*(x) + t. ,f fort E (0. 11. (Here 
we construct a G-invariant 2-form on G/G,,, by G-invariant extension of a G,,,-invariant 
2-form (w, [X, Y]) in the T,(G/G,,,).) 0 

Case (IV) (in Lemma 2.6): First we note that according to the theorem of Duistermaat- 
Heckman this case never happens when dim M = 4, because the volume of a orbit G (p(m)) 
tends to zero when /J(M) tends to a point in a singular (coadjoint) orbit. The same argu- 
ment as in case (II) shows us that G,,, ?’ Zmax, Gmin 2 Zmin and Z,,,/Z(u) = CPt, 
Z,,,/Z(u) = CPk. 

Proposition 2.14. Suppose that M is in ca.se (IV). Then M is G-difleomorphic to a G- 
invariant bundle over a coadjoint orbit of G or to the symplectic blow-down of such a 
G-bundle along the two singular (simplectic) orbits of G. 

ProoJ We consider three possible subcases: (F/a), (IVb) and (IVc). 
(IVa) If 1 > 2 and k > 2, then G,,, = S(U/+i x l/k x Ut) x Go, Gmin = S(r// x Ut x 

U~+I ) x Go, Greg = S(CJ/ x Uk x S’) x Go, and Z(u) = S(U[ x Ut x uk x UI) x Go. Here 
the inclusion Ut + r/,+1 and uk + uk+t is canonical. Let c? := G/(S(Ut+l x Uk+l) x 
Go) be a coadjoint orbit of G. Let nmin denote the natural G-equivariant projection from 
G/G,i, + U. In the same way we dehne the projection nrnax. We observe that if the 
two points m,,, E GIGmax and mmin E G/G,j, are in the same gradient flow of the G- 
invariant function HG then their image under nmax and nmin coincide. Hence the projection 
nmin and nmax can be extended to a projection n : M + 0. Clearly the fiber is invariant 
under the G-action. The group S(Ut+l x I/k+,) acts on the fiber of projection l7 from M 
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to 0 with three orbit types: the singular ones are CP’ and CP” and the regular orbit is 
S(U/+t x Uk+t))/S(U[ x Uk x S’). Thus the fiber is diffeomorphic to CP’+k+‘. 

The simplest example of this case is CP’+k+’ with the standard action by S(U/+t x 

uk+l) c suk+/+2. 

(IVb) If k = I, 1 > 2, then except the above decomposition for G,,,, Gmin, G,, and 
Z(u) there is only the following possible subcase: Z(u) = S(Ut x Ui x U[) x Go, G,,, = 
S(U2 x U/) x Go, G,i, = S(Ul x U/+1) x Go, and Greg = SU/ x S’ x Go. Let SA be the 
subgroup of Z(u) generated by the vector orthogonal to Lie Greg in Lie Z(v). Denote by 
k the suspension of G/G,,,. Clearly i is diffeomorphic to G xz(“) S2, where Z(u) acts 
on S2 via the projection to SA. According to Proposition 2.10 k can be provided with a 
G-invariant symplectic form such that the reduced symplectic form at G/Z(u) (considered 
at the “mean point” in h;r) is the same as that reduced from M. We claim that M is a 
symplectic blow-down of &? along the two singular orbits G/Z(u),,, and G/Z(u),i,. To 
see this we cut a G-invariant neighborhood of two G-singular orbits in M (resp. &%). By 
the very construction of G these new symplectic manifolds are symplectomorphic. Hence 
follows the statement. 

Now we shall show the existence of such a G-symplectic manifold. Denote by k the 
Cartan subalgebra of g. By Kirwan’s convexity theorem there are elements u. (Y E k such 
that Z(u) = S(Ul x Ul x Cl/) x Go, Z(V + a) = G,,,, Z(U - c~) = Gmin. Duistermaat- 
Heckman tells us that the Chem class of the SA-bundle G/G,,, + G/Z(u) is proportional 
to a. Hence the Lie subalgebra Lie Greg is orthogonal to (Y in Lie Z(u). We shall show that 
there are such elements 1y and u satisfying the above condition. 

Without lost of generality we assume that Go = 1. Thus G = SU/+2. Write u = (XI, 
x2, x3, . , x3) (1 times) with c x; = 0 and xt # x2. Thus the equation for Ly = (at. ~2, 
(YJ,...,~YJ)~s(YI+~~+~~~ =O,x2+~2=.~3+a3(andisnotzero),.~-at =x2--al(and 
is not zero). The solution to these equations is (I + 2)at = /(XI -x2), CY~ = at -XI +x2 = 
(I - 1)x] - (21 - 1)x2, cr3 = CY~ +x2 - x3 = (1 - 1)(x1 - 2x2) - x3. The only thing 
need to check is the fact that Zmax/Greg = S2’-t, Zmin/Gree = Szk-‘, where G,, is the 
subgroup generated by the subalgebra orthogonal to the vector a. We can do it by tinding 
an orthogonal representation of G,i, (resp. G,,, ) on C2 (resp. C’) such that it acts on S3 
(resp. S2”) transitively with Greg as an isotropy group (see also [AA] which includes a 
corresponding Borel’s table of the groups transitively acting on spheres). 

With these data at hand it is easy to construct a G-invariant symplectic structure on 
the G-manifold (G,i,. Greg, G,,,) by the same lifting construction as in the proof of 
Proposition 2.10. Namely we chose the family of symplectic form on G/Z(u + ta), 1 E 
[ - I, I], as the Kirillov-Kostant-Sourriau form. 

(IVc) If k = 1 = I, then except the decomposition analogous in subcase (IVb) (and hence 
subcase (IVa)) there is only the following possible cases with Lie G,,, = Lie Gmin = 
su2 x Lie Go, LieZ,, = S(CII x ul) x Lie Go. Using Kirwan’s convexity theorem we 
conclude that this case never happens. 0 

Clearly Theorem 1. I follows from Lemma 2.6, and Propositions 2.10,2.12 and 2.14. We 
also note that any M in cases (II)- can be considered as a symplectic blow-down of a 
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G-symplectic manifold in case I. To compute the cohomology ring of a symplectic blown 
we may use a method in [GH, Chap. 4, Section 61. 

Remark 2.15. The case of a non-Hamiltonian symplectic action with cohomogeneity 1 of 
a compact Lie group G is a bit more combinatorially complicated. The main observation 
in this case is the fact, analogous to Proposition 2.1, namely any principal orbit of such 
an action is an St-bundle over a homogeneous symplectic manifold (the Kirillov-Kostant- 
Sourriau theorem states that such a manifold is locally isomorphic to a coadjoint orbit 
of G or an central extension of G). A simple case when the quotient space Q = M/G 
is isomorphic to S’ can be done easily because in this case, according to Alekseevskis’ 
theorem [AA, Proposition 4.41, M must be an extension of a primitive manifold T’+’ with 
a free action of & x T’ by means of group G and an epimorphism 4 from a subgroup 
H C G to & x T1, where & x T’ acts freely on T If’ Since G/H is a principal orbit of . 
M it must be an S’-bundle over a coadjoint orbit of a central extension of G. 

3. Small quantum cohomology of some symplectic manifolds admitting a 
Hamiltonian action with cohomogeneity 1 of U,, 

Small quantum cohomology * (or more precisely the quantum cup-product deformed at 
H2(M, C) C H* (M, C)) was first suggested by Witten in context of quantum field theory 
and then has been defined mathematically rigorous for semi-positive (weakly monotone) 
symplectic manifolds by Ruan-Tian [RT] (see also [MS]) and recently for all compact 
symplectic manifolds by Fukaya and Ono [FO]. This quantum product structure is an 
important deformation invariant of symplectic manifolds (and recently Schwarz [Sch] has 
derived a symplectic fixed points estimate in terms of quantum cup-length). Nevertheless 
there are not so much examples of symplectic manifolds whose quantum cohomology 
can be computed (see [CF,FGP,GK,ST,RT,W]). The main difficulty in the computation of 
quantum cohomology is that if we want to compute geometrically it is not easy to “see” 
all the holomorphic spheres realizing some given homology class in H2(M, Z). (On the 
other hand, computational functorial relations for quantum cohomology are expected to be 
found.) 

In this section we consider only the case of M being a CPk-bundle over Grassmannian 
GQ(N) of k-planes in CN: M = U(N) x(~(k)x~(N_k),&) CPk, where 4 acts on @Pk 
through the composition of the projection onto U(k) with the embedding U(k) -+ U (k + 1) 
and the standard action of U (k + 1) on CPk (“standard” action means the projectivization 
of the standard linear action on C k+‘) It is easy to see that the action on CPk of the . 
restriction of $ to U(k) has two singular orbits: CPk-’ and a point, and its regular orbits 
are the sphere S2k-‘. According to the previous section we see that M can be equipped 
with a G-invariant symplectic structure and a Hamiltonian action of G = U(N) with the 
generic orbit of G-action on M being isomorphic to U(N)/(U(k - 1) x U(N - k)) and 

2 For a definition and a formal construction of full quantum cohomology see [KM]. 
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its image under the moment map p: M -+ u(n) is symplectomorphic to the flag manifold 
U(N)/(U(l) x U(k- 1) x U(N -k)). WithrespecttoLemma2.6we see thatM belongs 
to case (I) if and only if k = 1, in this case M is a toric manifold. We can also consider 
M as the projectivization of the rank (k + I) complex vector bundle over Grk(N) which is 
the sum of the tautological Ck-bundle To and the trivial bundle C. A special case of such 
M is @P*#@P* whose quantum cohomology is computed in [RT, Example 8.61 (see also 

UW). 
By Lemma 3.1 below M admits a G-invariant monotone symplectic structure. To compute 

the small quantum cohomology algebra of M we use several tricks well known before 
[ST,RT,W] (e.g. the use of Gromov’s compactness theorem) and the positivity of intersection 
of complex submanifold. (In our monotone case we can also use the fact that the projection 
to the base Grk(N) of a holomorphic sphere in M is also a holomorphic sphere in Grk (N) 
with area less than or equal to the area of the original sphere.) Thus we can solve this 
question in our cases positively. It seems that by the same way we can give a recursive 
rigorous computation of small quantum cohomology ring of full or partial flag varieties, 
since any k-flag manifold is a Grassmannian bundle over a (k - I)-flag manifold (see also 
[GK,CF,FGP] for other approachs to this problem). 

Recall that [Bo] the cohomology algebra H*(Grk(N), C) is isomorphic to the factor- 
algebra of the algebra C[xt, . . . , Xk] @ C[yl , . . . , y&k] over the ideal generated by St(,) 

(Xl,..., yN_k) (see also Proposition A.4 in Appendix A). Geometrically xi is ith Chem 
class of the dual bundle of the tautological Ck-vector bundle over Grk(N), and yi is 
ith Chem class of the dual bundle of the other complementary CNpk-vector bundle over 
Grk (N). Another description of H * (Grk (N), R) uses Schubert cells which form an additive 
basis, the Schubert classes, in H*(Grk(N), [w) (see e.g. [FGP] and the references therein 
for the relation between two approaches). Summarizing we have (see e.g [ST,MS]) 

H*(Grk(N), C) = 
@l,...,Xkl 

(YN-k+l, . . 3 YN) 

where )'N_k+j I= -~~c~kfj XiYN_k+j_i (are defined inductively). The first Chern class 
of T,Grk(N) is Nxt 

The quantum cohomology of Grk(N) was computed in [ST,W]. Now let us compute 
the quantum cohomology algebra QH*(M, C). Denote by f the Poincare dual to the big 
singularorbitU(N)/(U(l)xU(k-l)xU(N-k))inM.Letx~,...,x~bethegenerators 
of H*(Grk(N), C) as above. It is easy to see that the first Chem class of T,M is (N - 
1)x1 + (k + 1)f. Then the minimal Chern number of T,M is GCD (N - 1, k + 1) (because 
the H2(M, Z) is generated by HT(Grk(N)) and H2(CPk)). 

Lemma 3.1. 
(i) We have 

H*(M, C) = 
@If, Xl, . . 1 Xkl 

(f(fk -.X,fk-’ +.‘.+(-l)kxk),yN-k+lt . . ..yh’)’ 

(ii) M admits a G-invariant monotone symplectic structure. 
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The formula is known in more general context [BT, Chap. 4, Section 20; GH, Chap. 4, 
Section 61. But in our simple case we shall supply here a simple proof. To derive 
Lemma 3.1 from the proof of Proposition 2.12 it suffices to show that 

PDM(GQ(N)) = .f” -x& +‘.‘+(-l)“xl,. (3.1) 

To prove (3. I) we denote PDM(GQ(N)) by a polynomial F’k(,f, x1, . XX). By con- 
sidering the restriction of P DM (Grk (N)) to the small orbit Grk (N) we conclude that 
the lowest term (free of ,f) of Pk is (- 1 )kxk. To define the other terms of Pk we consider 
the restriction of P DM(Grk(N)) = Pk to the submanifold &f c M, which is the CP” 
bundle over Gvk_t (N - 1). Let M’ be a submanifold of M which is defined as M but 
over GTk_t (N - 1). Using the formula 

(pk),fi = PDc(Grk_l(N - 1)) = PDti(M’). PDMjGrk-l(N - 1) 

and the fact thatPD,(M’) = ,f, we conclude (by using the induction step) that Pk 
equals RHS of (3. I). 
It is well known that Nxt is a symplectic class in H*(Grk(N). 1w). By checking the 
non-degeneracy of the family of U(N)-invariant forms (Nxl + t (k + I ),f) at a point 
T,((U(N))/U(I) x lJ(k - I) x U(N - k) we conclude that the condition for the 
existence of an invariant symplectic form in the proof of Proposition 2.12 holds. Hence 
M admits a G-invariant monotone symplectic structure. 

According to a general principle for computing the small quantum cohomology ring of 
a monotone symplectic manifold (M, w) we need to compute only the quantum relations 
[ST,W]. More precisely, let g; (Z 1. . , zm) be polynomials generating the relations ideal of 
the cohomology algebra H*(M, @) generated by (z;). Then zi are also generators of the 
small quantum algebra QH*(M, C) = H*(M, C) @ Z[q] with the new relations jj;(z;) = 
q P; (z;, 4). Here y is the quantum variable, i; is the polynomial defined by g; with respect 
to the quantum product in Q H*(M, C). Denote the quantum product by *. There are several 
equivalent approachs to small quantum cohomology but we use notations (and formalism) 
in [MS]. 

Theorem 3.2. Let M sati& the condition 2(k + 1) = N - I and as before, let Pk denote 
the P&care dual to Grk (N). Then its small quantum cohnmology ring is isomorphic to 

Proof Recall that (see e.g. [McDS]) the moduli space MA(M) of holomorphic spheres 
realizing class A E H2(M, Z) gives a non-trivial contribution the quantum product of a * 6, 
a, b E H*(M, C), if there is an element c E H*(M, C) such that the Gromov-Witten 
invariant @A (P D(a), P D(b), P D(c)) # 0. In this case we have 

deg (a) + deg (b) 5 dim M + 2ct (A) 5 dega + deg b + dim M, 

which is also called a degree (dimension) condition. 

(3.2) 
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intersects with the fixed @Pk at one point because f k([CPk-l]) = 1. Since there is exactly 
one complex line through the given two points in CP” (and this line always intersects the 
divisor CPk-’ c @Pk) we deduce that the Gromov-Witten invariant in (3.3b) is 1. 

Summarizing we get 

f *[u] pk = 9 (3.3c) 

(here the LHS of (3.3~) denotes the quantum polynomial, deformed by [u]). 
Next we shall compute the contribution of Ml,1 to the “old” defining relation yj, j = 

N - k + 1, N. First we shall show that 

@[u](PDM(Xp), pDMM(Yj-p)3 pDMIWl) = 0 (3.3d) 

for any [w] E H*(M) with degree equal dim A4 + 2(k + 1) - 2 j. Using the formula 
P DM [ j* (y)] = j-l P DB[Y] for the Poincare dual of a pull-back cohomology class of the 
base of a fiber bundle we observe that if (3.1) is not zero then P D,w[w]) fl P DM(x,) fl 
P D~(yj_~) # !d. But it is impossible by the dimension reason. 

Thus there remain possibly four other non-trivial contributions to the quantum relations. 
The first one is related to the Gromov-Witten invariants 

QJ[~UI(PDM(X~), PDM(Yj-p), PDM(~)), 

the second to the Gromov-Witten invariants 

(3.4) 

@[ul(PD~u(xp)t PDM(Yj-p)t PDM(w)), (3.5) 

and the two other Gromov-Witten invariants related to the (exceptional) classes [u] - [u] 
and 2([u] - [u]). 

Here in the cases (C2) and (C3) the degree of w must be dim M + 4(k + 1) - 2 j. 
To compute (C2) we use a generic almost complex structure Jreg nearby the integrable 

one. Thus the image of Jr,,-holomorphic spheres in class 2[u] must in a (arbitrary) small 
neighborhood of a complex line in the fiber @ Pk, that is the projection of a Jr,,-holomorphic 
sphere in class [u] must be in a ball of radius e/2. Now we can use the same argument as 
before. Since PDM(x~) fl PDM(yj_p) fl PDM(uJ) = Cl there exists a positive number E 
such that the e-neighborhood of these cycles also do not have a common point. Now looking 
at the projection of these cycles on the base Grk (N) we conclude that the contribution (C2) 
is zero. 

In order to compute the contribution (C3) we need to know the moduli space of the 
holomorphic spheres in class [u] whose dimension is dim M + 4(k + 1) = dim Grk(N) 
+ 6k + 4 = dim Grk(N) + 2N + 2(k - 1). We pick up the standard integrable complex 
structure. We claim that all these holomorphic spheres can be realized as holomorphic 
sections of C Pk-bundle over @Ptul, where @ Prtl is a holomorphic sphere of minimal degree 

in Grk (N). Indeed over this C P ’ the bundle C Pk is the projectivization of the sum of (k + 1) 
holomorphic line bundles with k Chem numbers being 0 and one number being (- 1). Thus 
for any holomorphic sphere (S2, f) w ic is a holomorphic section of the CPk bundle h’ h 
over CP’ we have H’(S2, f*(T,M)) = H’(S2, f*(T*CPk)) = 0. To show that these 
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holomorphic sections exhaust all the holomorphic spheres in the class [u] we look at their 
projection on the base Grk (N). 

Now let us to compute (C3) with j = N - 1 or j = N (by dimension condition (3.2) 
those are the only cases which may enter into the quantum relations). 

If j = N - 1 then the contribution in (C3) must be 0 since we know that on the base 
B = Grk (N) there is no holomorphic curve of minimal degree which go through the cycle 
P Dg (xp) and P Dg (y~_~_ 1) (by dimension reason). 

If j = N then there are two possibilities for P DM (w), namely they are [u] and [u] - the 
generators of H2(M, Z). 

Let us consider the first case, i.e. P DM (w) is a holomorphic sphere u in the fiber @Pk. 
The induction argument on Grk(N) [ST,W] shows that p in (C3) must be k and there is a 
unique (up to projection j) holomorphic sphere in class [v] which intersects with P D~((xk) 
and PDM(yN_k) and satisfies the following property: Its image under the projection j 
goes through the fixed point j(u) E Grk(N). Hence we can reduce our computation of 
the corresponding contribution in (C3) to the related Gromov-Witten invariant in the CPk- 
bundle over C P/“, . Thus we get 

@lvl(PDM(xk), PDM(YN-k), [u]) = (-l)k+l. (3.6a) 

Now let us consider the second case, i.e. P DM (w) is the class [u] realized by a holomorphic 
section of the CPk-bundle over the CP’. Clearly there is only one holomorphic section 
passing through a given point in this bundle. Thus we get 

@lvl(PDM(xk), PD,w(YN-k), [VI) = (-l)k+l. (3.6b) 

In order to compute (C4) let us consider the moduli space of holomorphic spheres in the 
class [u] - [u]. We have two arguments to show that there is no J-holomorphic sphere in 
this class. The simplest argument was suggested by Kaoru Ono. Namely considering the 
intersection of a holomorphic sphere in this class with the big singular orbit U(N)/(U( 1) x 
U (k - 1) x U (N - k)) yields that there is no holomorphic sphere in this class. The another 
(longer) argument uses the area comparison. Clearly the area of such a holomorphic sphere 
equals the value w ( [V ] - [u]). On the other hand the projection to Grk (N) of a holomorphic 
sphere in this class has area w([v]) > w([u] - [u]). (The projection decreases the area 
because of Duistermaat-Heckman theorem applied to our monotone case.) Thus there is 
no J-holomorphic sphere in this class. Since the class [u] - [u] is indecomposable in the 
Gromov sense it follows from the Gromov compactness theorem that for nearby generic 
almost complex structure J& there is also no J,& -holomorphic sphere. Thus there is no 
quantum contribution of this class. 

Finally to compute (C5) we consider the quantum contribution associated to the class 
2([v] - [u]). The space of J-holomorphic spheres in this class is empty by the same reason 
as above (two arguments). Finally by using the Gromov compactness theorem we can show 
the existence of a regular almost complex structure &a nearby J such that there is no Jreg- 
holomorphic sphere in this class. (Because if bubbling happens, they must be holomorphic 
spheres in class [IJ] - [u], which is also impossible.) 
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Summarizing WC get that the only new quantum relations are those involving (3.3e). 

(351) and (35b). Note that ,f’ is defined uniquely by the condition f’(lr) = I = ,f’(tl). This 

completes the prool‘of Theorem 3.2. 3 

Remark 3.3. Since the rank of H:(M) is 2 it ih more convenient to tahc two quantum 

variables c/l, L/Z. In this case our computations give a (slightly) formal different answer. 

namely (R3) = (11 and J‘:L = (-I )““I (qf,f’l + q:,fi). Here ,f’l and ,f form a basis of 

Ho177 (Hz(M. @). E) = H’(A4. 02) which is dual to the basis (17/j. [I,]) E Hz(M. 42). 

Remark 3.4. Let A4 be a symplectic manifold as in Theorem 3.2. 

(i) It follows immediately from Theorem 3.1 and Schwa-z’s result [ Sch] that the any exact 

symplectomorphism on M has at least k + I fixed points. 

(ii) It seems that after a little work we can apply the result in 1 HV] to show that the Weinstein 

conjecture also holds for those M. 

4. Compact symplectic manifolds admitting symplectic action of cohomogeneity 2 

A direct product of (MI. (OI ) and (hi/z. ~2) is a symplectic manifold which admits a 

symplectic action of cohomogeneity 2 provided that either both (M;. co, ) admit symplectic 

action ofcohomogeneity I or (Ml. (c)l) is a homogeneous symplectic manifold and (Ml. (02) 
has dimension 9. These examples are cxtremally opposite in a sense that. in the first C;ISC 

the normal bundle of any regular orbit is isotropic. and in the second case the normal bundle 

is symplectic. 

PNM!/: Since the set MrcF of regular points in M’” is open and dense in M”‘. and the 

property of being symplectic is an open condition, it suftices to show that there is an open. 

dense. G-invariant set M c Mt.‘? such that all the orbit G(.v) C M is symplectic (ot 

coisotropic simultaneously). We consider the moment map 11 : M’” + ,q* = g. By 
Sard’s theorem the set S,, of points .Y in M”‘, where the dimension r/ of 11~’ (/r(.t-)} is 

maximal. is open and dense in M2”. Let Mf;” be the set in M consists of points .r such 

that ~(G(.Y)) is a orbit of maximal dimension in p(M). Using Kit-wan’s theorem we see 

that MI;“” is an open and dense set in M. We claim that we can take M as the intersection 

of S,, with Mf:’ and the set of regular points in M’“. Using formula (2.3) we note that 

tl 5 2. Since the dimensions of G(X) and of /~(G(.Y)) are even if .I- E M . we get that 

tl must be either 0 or 2. First WC suppose that tl = 0. Since G is connected all the other 

principal orbit G(777’) in M also connected. and since jr(G(r77)) is simply connected. all 
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the principal orbits in M must be dift’eotnorphic to /~(G(/II)) (and hence are symplectic). 

Clearly if orbit is symplectic then the restriction of G-action on it is also Hamiltonian. thus 

by Kirillov-Kostant-Sourriau theorem. it must be ix)tnorphic to a codjoint orbit of G. 

Now let LIS assume that the “generic” dimension tl of /A ~ ’ (/~(777 1) is 2. Since the dimension 

of/i(G(.\-)) isaconstant for.\- E M . we conclude that either all G(.\-). f0r.v E M is eithet 

\ymplectic sitnultancously or isotropic simultaneously. In the last case /I-’ (/A(.\.)) c G(.\-) 

and /A(G(.\ )) = G(.v)/~r~‘(/~(.v)). Arguin g as in the proof 01‘ Proposition 2. I we see that 

/r ’ (11 (.Y)] admits ;I nowhcrc zero vector tields .S~IUL/ F,,, and .sgd 31.2. Thus it tnust be 

an isotropic torus. 0 

Remark 1.2. 
(i) The quotient space /l(M)/G is tither a point or a convex two-dimensional polytop. 

(ii) If the adon ofG is Hamiltonian and the principal orbit is symplectic then the condition 

that /L (M)/G is a point is equivalent to the fact that tl (in the prool‘of Proposition 4. I ) 
quals 3. In this case M is diffeomot-phic IO a bundle over a coadjoint orbit of G whose 

fiber is a two-dimrnsional surface. 

The lirst statement in Remark 4.2 t’ollows from the proot’of Proposition 4. I and Kirwan’s 

theorem on convexity 01‘ moment map. The second statement f’ollows by considering the 

moment map. 

Indeed. by the ditnen\ion rcaon in this case there is also only one orbit type 01‘ G-action 

on M. Note that such ;I bundle always admits a G-invariant sytnplectic structure. 

It‘ the principal orbits of G in M are coisotropic then P = p( M)/G is always :I two- 

dimensional comex polytop. 

Pm$ In this case M admix\ a projection x over a coadjoint orbit /1(G(777)) with tibet 

,7 ’ being a symplectic 4manif’old. This sytnplectic 4munil’dd admils a T2-Hamiltonian 

action. Hence it must be a rational or ruled surface (see (Au]). 0 

Appendix A. Homogeneous symplectic spaces of compact Lie groups 

First we recall a theorem of Kirillov-Koatunt~Sout-riau (MX e.g. [Kill). 
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Theorem A.1. A symplectic mantfold admitting a Hamiltonian homogeneous action of a 
connected Lie group G is isomorphic to a covering of a coadjoint orbit of G. 

If G is a connected compact Lie group then all its coadjoint orbits are simply connected. 
Thus in this case we have the following simple result. 

Corollary A.2. A symplectic manifold admitting a Hamiltonian homogeneous action of a 
connected compact Lie group G is a coadjoint orbit of G. 

Table A.3. We present here a list of all coadjoint orbits of simple compact Lie groups. Recall 
that a coadjoint orbit through u E g can be identified with the homogeneous space G/Z(u) 
with Z(u) being the centralizer of u in G. Element IJ in a Cartan algebra Lie Tk c g is 
regular iff for all root o of g we have o(v) # 0. In this case Z(v) is the maximal torus Tk of 
G. If u is a singular element with cq (v) = 0 then Lie Z(u) is a direct sum of the subalgebra 
in g generated by the roots oi and Lie Tk. To identify the type of this subalgebra Lie Z(u) 
we observe that Lie Tk is its Cartan subalgebra and the root system of Lie Z(u) consists 
of those roots o of G such that o(u) = 0. Looking at tables of roots of simple Lie algebras 
[OV] and their Dynkin schemes we get easily the following list (which perhaps could be 
found somewhere else) 

(A) If G = SU,+t then Z(U) = S(U,, x . . x U,,), c ni = n + 1. 
(B), (C), (D) If G is in Bn, Z, or D, then Z(u) is a direct product Un, x . . x U,,, x G, 

with rkGp + c ni = rkG, and G, and G must be from the same series (B), (C), (D). 
Analogously but more combinatorically complicated are the types of Z(v) in the excep- 

tional series. Note that all the listed below simple exceptional groups are simply connected. 
(&) Except the regular orbits with Z(u) = T6 we also have other possible singular orbits 

with Z(u) = S(Uk, x . . x uk,,) with n 2 2, c ki = 7 and Tk x Spin&k with k = 1,2. 
(ET) Analogously. Possible are also Z(u) = T’ x SU2 x Spin10 and Z(u) = T’ x Eg. 
(Es) Analogously. Possible are also T’ x E7 and T’ x SU2 x EC. 
(F4) Singular orbits can have Z(u) being T2 x SU3, T2 x SU2 x SL5 or T’ x Spin7 

and T’ x Sp3. 
(Gz) Except the regular orbit G2/T2 there are also singular orbit G2/SU2 x T1 

To compute the cohomology ring of G/Z(u) we use: 

Proposition A.4 [Bo, Theorem 26.11. 
(i) The cohomology algebra H(G/Z(u), R) is a factor-algebra SZ(“) over the ideal gen- 

erated by pi (S:) which equals the characteristic subalgebra. 
(ii) Letsl-l,..., st - 1 and correspondingly, rl - 1, . . . , r-t - 1 be degree of the generators 

in H*(G) and H*(Z(u)). Then the Poincarepolynomial of G/Z(u) equals 

(1 - t”1). . . (1 _ t”‘) 

(1 - p.1). . . (1 - tr/)’ 
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Here SG is the algebra of G-invariant polynomials in g and Sb is its subalgebra which 
is generated by monomials of positive degree. 

Remark AS. All the G-invariant symplectic form on G/Z(v) are compatible with the 
(obvious) G-invariant complex structure. Thus all of them are deformation equivalent to a 
monotone symplectic form. 

Remark A.6. For any symplectic form w on a homogeneous space IV*” of a compact Lie 
group G the averaged form wG is a G-invariant symplectic form in the same cohomology 
class [w]. Thus the necessary and sufficient condition for the existence of a symplectic form 
in a cohomology class [w] E H*(M *’ R) is that [win > 0. As another consequence we see , 
that any homogeneous space of a compact Lie group which admits a symplectic structure 
is diffeomorphic to a homogeneous symplectic manifold. But it is not true for a compact 
manifold of cohomogeneity 1 (or higher cohomogeneity). For example CP*#@P* admits 
a SU(3) action of cohomogeneity 1 (with no fixed point) but no symplectic form invariant 
under this action. 
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